[1] Alam M M, Torgo L, Bifet A. A survey on spatio-temporal data analytics systems[J]. ACM Computing Surveys, 2022, 54(10): 1-38.
[2] Eldawy A, Mokbel M F. Spatialhadoop: A mapreduce framework for spatial data[C]//2015 IEEE 31st International Conference on Data Engineering. Seoul, South Korea: IEEE, 2015: 1352-1363.
[3] Fox A, Eichelberger C, Hughes J, et al. Spatio-temporal indexing in non-relational distributed databases[C]//2013 IEEE International Conference on Big Data. Silicon Valley, CA, USA: IEEE, 2013: 291-299.
[4] Li R, He H, Wang R, et al. Just: Jd urban spatio-temporal data engine[C]//2020 IEEE 36th International Conference on Data Engineering (ICDE). Dallas, TX, USA: IEEE, 2020: 1558-1569.
[5] Bakli M, Sakr M, Soliman T H A. HadoopTrajectory: a Hadoop spatiotemporal data processing extension[J]. Journal of geographical systems, 2019, 21(2): 211-235.
[6] Theodoridis Y, Vazirgiannis M, Sellis T. Spatio-temporal indexing for large multimedia applications[C]//Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems. Hiroshima, Japan: IEEE, 1996: 441-448.
[7] 汤娜,朱展豪,李晶晶,等.时空相点移动对象数据索引PM-Tree[J].计算机学报, 2021, 44(3): 579-593.Tang N, Zhu Z H, Li J J, et al. PM-Tree: A spatio-temporal phase point mobile object data index[J]. Chinese Journal of Computers, 2021, 44(3): 579–593.
[8] Popa I S, Zeitouni K, Oria V, et al. PARINET: A tunable access method for in-network trajectories[C]//2010 IEEE 26th International Conference on Data Engineering (ICDE). Long Beach, CA, USA: IEEE, 2010: 177-188.
[9] Tao Y, Papadias D. The mv3r-tree: A spatio-temporal access method for timestamp and interval queries[C]//Proceedings of the 27th International Conference on Very Large Data Bases. Roma, Italy: Morgan Kaufmann Publishers Inc., 2001: 431–440.
[10] Nishimura S, Das S, Agrawal D, et al. MD-HBase: A scalable multi-dimensional data infrastructure for location aware services[C]//2011 IEEE 12th International Conference on Mobile Data Management. Lulea, Sweden: IEEE, 2011: 7-16.
[11] Van Le H, Takasu A. A scalable spatio-temporal data storage for intelligent transportation systems based on hbase[C]//2015 IEEE 18th International Conference on Intelligent Transportation Systems. Gran Canaria, Spain: IEEE, 2015: 2733-2738.
[12] Li R Y, He H J, Wang R B, et al. TrajMesa: A Distributed NoSQL-Based Trajectory Data Management System[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(1): 1013-1027.
[13] Liu H, Yan J, Wang J, et al. HGST: A Hilbert-GeoSOT Spatio-Temporal Meshing and Coding Method for Efficient Spatio-Temporal Range Query on Massive Trajectory Data[J]. ISPRS International Journal of Geo-Information, 2023, 12(3): 113.
[14] He H, Li R, Ruan S, et al. Trass: Efficient trajectory similarity search based on key-value data stores[C]//2022 IEEE 38 th International conference on data engineering (ICDE). Kuala Lumpur, Malaysia: IEEE, 2022: 2306-2318.
[15] Qin J, Ma L, Niu J. Thbase: A coprocessor-based scheme for big trajectory data management[J]. Future Internet, 2019, 11(1): 10-20.
[16] He H, Xu Z, Li R, et al. TMan: a high-performance trajectory data management system based on key-value stores[C]//2024 IEEE 40th International Conference on Data Engineering (ICDE).Utrecht, Netherlands: IEEE, 2024: 4951-4964.
[17] Alarabi L, Mokbel M F, Musleh M. St-hadoop: A mapreduce framework for spatio-temporal data[J]. GeoInformatica, 2018, 22(4): 785-813.
[18] Alarabi L. Summit: a scalable system for massive trajectory data management[J]. Sigspatial Special, 2018, 10(3): 2-3.
[19] MA Q, YANG B, QIAN W, et al. Query processing of massive trajectory data based on mapreduce[C]//Proceedings of the first international workshop on Cloud data management. 2009 : 9–16.
[20] Yu J, Wu J, Sarwat M. Geospark: A cluster computing framework for processing large-scale spatial data[C]//Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle, WA, USA: ACM, 2015: 1-4.
[21] Xie D, Li F, Yao B, et al. Simba: Efficient in-memory spatial analytics[C]//Proceedings of the 2016 international conference on management of data. 2016: 1071-1085.
[22] Harsha2010. Magellan [EB/OL]. (2021) [2024-04-10]. https://github.com/harsha2010/magellan.
[23] Shang Z, Li G, Bao Z. DITA: Distributed in-memory trajectory analytics[C]//Proceedings of the 2018 International Conference on Management of Data. Houston, TX, USA: ACM, 2018: 725-740.
[24] DING X, CHEN L, GAO Y, et al. UlTraMan: A unified platform for big trajectory data management and analytics[J]. Proceedings of the VLDB Endowment, 2018, 11(7) : 787 – 799.
[25] Fang Z, Chen L, Gao Y, et al. Dragoon: a hybrid and efficient big trajectory management system for offline and online analytics[J]. The VLDB Journal, 2021, 30(2): 287-310.
[26] Wang L, Hu L, Fu C, et al. SLBRIN: a spatial learned index based on brin[J]. ISPRS International Journal of Geo-Information, 2023, 12(4): 171.
[27] Nathan V, Ding J, Alizadeh M, et al. Learning multi-dimensional indexes[C]//Proceedings of the 2020 ACM SIGMOD international conference on management of data.New York, NY, USA: ACM, 2020: 985–1000.
[28] Sheng Y, Cao X, Fang Y, et al. WISK: a workload-aware learned index for spatial keyword queries[J]. Proceedings of the ACM on Management of Data, 2023, 1(2): 1-27.
[29] Zhang S, Ray S, Lu R, et al. SPRIG: A learned spatial index for range and kNN queries[C]//Proceedings of the 17th international symposium on spatial and temporal databases. New York, NY, USA: ACM, 2021: 96–105.
[30] Patil M, Ravishankar C V. Model reuse in learned spatial indexes[C]//Proceedings of the 36th International Conference on Scientific and Statistical Database Management. New York, NY, USA: ACM, 2024: 1–12.
[31] Tu G, Feng K, Cong G, et al. The RLR-Tree: A Reinforcement Learning Based R-Tree for Spatial Data[C]//Proceedings of the 2023 International Conference on Management of Data. New York, NY, USA: ACM, 2023: 1-26.
[32] Ding J, Nathan V, Alizadeh M, et al. Tsunami: A Learned Multi-Dimensional Index for Correlated Data and Skewed Workloads[J]. PVLDB, 2020, 14(2): 74-86.
[33] Chen X, Xu J, Zhou R, et al. S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search[J]. Geoinformatica, 2020, 24: 3-25.
[34] Chang Y, Tanin E, Cong G, et al. Trajectory Similarity Measurement: An Efficiency Perspective[J]. Proceedings of the VLDB Endowment, 2024, 17(9): 2293-2306
[35] Al-Mamun A, Wang J, Aref W G, et al. Learned indexes from the one-dimensional to the multi-dimensional spaces: Challenges, techniques, and opportunities[C]//Companion of the 2025 International Conference on Management of Data. Santiago, Chile: ACM, 2025: 788-796.
[36] Yang M, Ma K, Yu X. An efficient index structure for distributed k-nearest neighbours query processing[J]. Soft Computing, 2020, 24: 5539-5550.
[37] Al Aghbari Z, Ismail T, Kamel I. SparkNN: A distributed in-memory data partitioning for KNN queries on big spatial data[J]. Data Science Journal, 2020, 19(1): 35.
[38] Qiao B, Ma L, Chen L, et al. A PID-based KNN query processing algorithm for spatial data[J]. Sensors, 2022, 22(19): 7651.
[39] Kaggle. Taxi Trajectory Data[EB/OL]. https://www.kaggle.com/datasets/crailtap/taxi-trajectory, 2018.
|