[1] 黄绿娥,于晓伟,鄢化彪,等.基于动态渐进融合的无人机海上救援目标检测算法[J].数据采集与处理,2025,40(02):334-348.
Huang Lü’e, Yu Xiaowei, Yan Huabiao, et al. UAV Maritime Rescue Target Detection Algorithm Based on Dynamic Progressive Fusion [J]. Journal of Data Acquisition and Processing, 2025, 40(02): 334-348.
[2] 刘吉凯,王伟强,苏祥祥,等.基于无人机多光谱影像和机器学习的水稻产量与氮素利用率预测[J/OL].农业工程学报,1+12+2-11[2025-11-03].
Liu Jikai, Wang Weiqiang, Su Xiangxiang, et al. Prediction of rice yield and nitrogen use efficiency based on UAV multispectral imagery and machine learning [J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 1+12+2-11 [2025-11-03]
[3] Gao D Z, Huang M, Jia K N, et al. A new approach to surveying cliff-dwelling endangered plants using drone-based nap-of-the-object photography: A case study of Clematis acerifolia[J]. Global Ecology and Conservation, 2024, 49: e02769.
[4] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60: 91-110.
[5] Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up robust features[C]//Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9. Springer Berlin Heidelberg, 2006: 404-417.
[6] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271.
[7] Li C, Li L, Jiang H, et al. YOLOv6: A single-stage object detection framework for industrial applications[J]. arXiv preprint arXiv:2209.02976, 2022.
[8] Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28.
[9] Verma T, Singh J, Bhartari Y, et al. Soar: Advancements in small body object detection for aerial imagery using state space models and programmable gradients[J]. arXiv preprint arXiv:2405.01699, 2024.
[10] 侯颖,吴琰,寇旭瑞,等.改进YOLOv8的无人机航拍图像小目标检测算法[J].计算机工程与应用,2025,61(11):83-92.
Hou Y, Wu Y, Kou X, et al. Improved small target detection algorithm for UAV aerial images of YOLOv8[J].Computer Engineering and Applications,2025,61(11):83-92.)
[11] Li H, Zhang R, Pan Y, et al. Lr-fpn: Enhancing remote sensing object detection with location refined feature pyramid network[C]//2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024: 1-8.
[12] Xu C, Wang J, Yang W, et al. RFLA: Gaussian receptive field based label assignment for tiny object detection[C]//European conference on computer vision. Cham: Springer Nature Switzerland, 2022: 526-543.
[13] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[14] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//European conference on computer vision. Cham: Springer International Publishing, 2020: 213-229.
[15] Zhao Y, Lv W, Xu S, et al. Detrs beat yolos on real-time object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024: 16965-16974.
[16] Kong Y, Shang X, Jia S. Drone-DETR: Efficient small object detection for remote sensing image using enhanced RT-DETR model[J]. Sensors, 2024, 24(17): 5496.
[17] 钟帅,王丽萍.MCS-RETR:改进RT-DETR的无人机航拍图像目标检测方法[J/OL].航空学报,1-16[2025-07-02].
Zhong Shuai, Wang Liping. MCS-RETR:Improved RT-DETR Aerial Image Target Detection Method[J/OL].Acta Aeronautics Sinica,1-16[2025-07-02].
[18] Liu C, Zhang S, Hu M, et al. Object detection in remote sensing images based on adaptive multi-scale feature fusion method[J]. Remote Sensing, 2024, 16(5): 907.
[19] Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 10781-10790.
[20] Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 658-666.
[21] Zhu P, Wen L, Du D, et al. Detection and tracking meet drones challenge[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 44(11): 7380-7399.
[22] Xia G S, Bai X, Ding J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 3974-3983.
[23] Sun W, Dai L, Zhang X, et al. RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2022: 1-16.
[24] Li H, Li J, Wei H, et al. Slim-neck by GSConv: A lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing, 2024, 21(3): 62.
[25] Shi Z, Hu J, Ren J, et al. HS-FPN: High Frequency and Spatial Perception FPN for Tiny Object Detection. arXiv 2024[J]. arXiv preprint arXiv:2412.10116.
[26] Xia X, Ma Y. Cross-stage feature fusion and efficient self-attention for salient object detection[J]. Journal of Visual Communication and Image Representation, 2024, 104: 104271.
[27] Wang A, Chen H, Liu L, et al. Yolov10: Real-time end-to-end object detection[J]. Advances in Neural Information Processing Systems, 2024, 37: 107984-108011.
[28] Khanam R, Hussain M. Yolov11: An overview of the key architectural enhancements[J]. arXiv preprint arXiv:2410.17725, 2024.
[29] Tian Y, Ye Q, Doermann D. Yolov12: Attention-centric real-time object detectors[J]. arXiv preprint arXiv:2502.12524, 2025.
[30] Xiao Y, Xu T, Xin Y, et al. FBRT-YOLO: Faster and Better for Real-Time Aerial Image Detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2025, 39(8): 8673-8681.
[31] Li X, Wang W, Wu L, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[J]. Advances in neural information processing systems, 2020, 33: 21002-21012.
[32] Feng C, Zhong Y, Gao Y, et al. Tood: Task-aligned one-stage object detection. In 2021 IEEE[C]//CVF International Conference on Computer Vision (ICCV). 3490-3499.
[33] Lyu C, Zhang W, Huang H, et al. Rtmdet: An empirical study of designing real-time object detectors[J]. arXiv preprint arXiv:2212.07784, 2022.
[34] Yang C, Huang Z, Wang N. QueryDet: Cascaded sparse query for accelerating high-resolution small object detection[C]//Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition. 2022: 13668-13677.
[35] Yao Z, Ai J, Li B, et al. Efficient detr: improving end-to-end object detector with dense prior[J]. arXiv preprint arXiv:2104.01318, 2021.
[36] Huang S, Lu Z, Cun X, et al. Deim: Detr with improved matching for fast convergence[C]//Proceedings of the Computer Vision and Pattern Recognition Conference. 2025: 15162-15171.
|