[1] WATI S, RAKESH N, ASTYA P N. Data communication
Issues in Underwater Sensor Network[C]//Proceedings of
2019
International
Conference
on
Computing,
Communication, and Intelligent Systems (ICCCIS). Greater
Noida, India: IEEE Press, 2019: 150-155.
[2] ACKER T, MEECHAM A. Underwater threat detection and
tracking
using
multiple
sensors
and advanced
processing[C]//Proceedings of IEEE International Carnahan
Conference on Security Technology. Orlando, USA: IEEE
Press, 2016: 1-7.
[3] WANG X, HAN Y, WANG C, et al. In-Edge AI:
Intelligentizing Mobile Edge Computing, Caching and
Communication by Federated Learning[J]. IEEE Network,
2019, 33(5): 156-165.
[4] LEE J, SOLAT F, KIM T Y, et al. Federated
Learning-Empowered Mobile Network Management for 5G
and Beyond Networks: From Access to Core[J]. IEEE
Communications Surveys & Tutorials, 2024, 26(3):
2176-2212.
[5] SUN Y, LIN Z, MAO Y, et al. Channel and
Gradient-Importance Aware Device Scheduling for
Over-the-Air Federated Learning[J]. IEEE Transactions on
Wireless Communications, 2024, 23(7): 6905-6920.
[6] LIANG Y, CHEN Q, ZHU G, et al.
Communication-and-Energy
Efficient
Over-the-Air
Federated Learning[J]. IEEE Transactions on Wireless
Communications, 2025, 24(1): 767-782.
[7] WANG S, XU Y, YOU C, et al. Communication-Efficient
Federated Learning by Quantized Variance Reduction for
Heterogeneous
Wireless
Edge Networks[J]. IEEE
Transactions on Mobile Computing, 2025, 24(8):
7632-7647.
[8] POPOSKA M, PEJOSKI S, RAKOVIC V, et al. Delay
Minimization of Federated Learning Over Wireless
Powered
Communication
Networks[J].
Communications Letters, 2024, 28(1): 108-112.
IEEE
[9] MAI L, LUO H, ZHANG Q. Integrated Over-the-Air
Computation and Non-Orthogonal Multiple Access
Communication in Wireless Uplink Systems[J]. IEEE
Transactions on Wireless Communications, 2024, 23(9):
11433-11443.
[10] ZHENG Z, DENG Y, YI W, et al. Over-the-Air
Computation Enabled Semi-Asynchronous Wireless
Federated
Learning[J].
IEEE
Transactions
Communications, 2025, 73(10): 8919-8936.
on
[11] LI L, HUANG C P, SHI D, et al. Energy and Spectrum
Efficient
Federated
Learning
via
High-Precision
Over-the-Air Computation[J]. IEEE Transactions on
Wireless Communications, 2024, 23(2): 1228-1242.
[12] ZHANG D, XIAO M, PANG Z, et al. IRS Assisted
Federated
Learning:
A Broadband Over-the-Air
Aggregation Approach[J]. IEEE Transactions on Wireless
Communications, 2024, 23(5): 4069-4082.
[13] 武影影, 毛伯敏. 面向6G智能反射面辅助的联邦学习安
全速率优化[J]. 网络与信息安全学报, 2025, 11(2):
115-124.
Wu Y Y, MAO B M. Secure Rate Optimization of
Federated Learning Assisted by 6G Intelligent Reflecting
Surfaces [J]. Journal of Network and Information Security,
2025, 11(2): 115-124.
[14] 周凯, 喻兰, 国强. 智能反射面辅助下基于交替优化的
秩二波束赋形算法[J]. 电子与信息学报, 2025, 47(7):
2098-2107.
ZHOU K, YU L, GUO Q. Rank-2 Beamforming Algorithm
Based on Alternating Optimization Assisted by Intelligent
Reflecting Surface [J]. Journal of Electronics and
Information Technology, 2025, 47(7): 2098-2107.
[15] ZHENG B X, ZHANG R. Simultaneous transmit diversity
and passive beamforming with large-scale intelligent
reflecting
surface[J].
IEEE
Transactions
on
Wireless Communications, 2023, 22(2): 920–933.
[16] WANG X, SHU F, SHI W P, et al. Beamforming Design for
IRS-Aided
Decode-and-Forward
Relay
Wireless
Network[J]. IEEE Transactions on Green Communications
and Networking, 2022, 6(1): 198-207.
[17] WU Q, GUAN X, ZHANG R. Intelligent Reflecting
Surface-Aided
Wireless
Energy and Information
Transmission: An Overview[J]. Proceedings of the IEEE,
2022, 110(1): 150-170.
[18] CAO H, FENG W, HE J, et al. Decentralized Federated
Learning for Secure Space-Terrestrial Communication With
Intelligent
Reflecting
Surface[J].
IEEE Wireless
Communications Letters, 2023, 12(12): 2083-2087.
[19] ZHANG T, MAO S. Energy-Efficient Federated Learning
With Intelligent Reflecting Surface[J]. IEEE Transactions
on Green Communications and Networking, 2022, 6(2):
845-858.
[20] SINGH POPLI M, SINGH R P, KAUR POPLI N, et al. A
Federated Learning Framework for Enhanced Data Security
and Cyber Intrusion Detection in Distributed Network of
Underwater Drones[J].
IEEE Access, 2025, 13:
12634-12646.
[21] HUANG N, WANG T, LIN Q B. Delay minimization for
intelligent reflecting surface assisted federated learning[J].
China Communications, 2022, 19(4): 216-229.
[22] 霍紫燕, 唐莉萍. 非凸多目标优化问题的凸上逼近方法
[J]. 重庆师范大学学报(自然科学版), 2025, 42(2): 68-77.
HUO Z Y, TANG L P. Convex approximation method for
non-convex multi-objective optimization problems[J].
Journal of Chongqing Normal University (Natural Science
Edition), 2025, 42(2): 68-77.
[23] WANG X, HOU X, GUAN F, et al. Underwater Federated
Learning: Empowering Autonomous Underwater Vehicle
Swarm with Online Learning Capabilities[C]//2024 IEEE
Global Communications Conference (GLOBECOM). Cape
Town, South Africa: IEEE Press, 2024: 379-384.
[24] XIA Z, DU J, JIANG C, et al. Latency Constrained
Energy-Efficient
Underwater
Dynamic
Federated
Learning[J]. IEEE Transactions on Networking, 2025,
33(1): 355-368.
[25] HE H, DU J, JIANG C, et al. Mobility-Aware Decentralized
Federated
Learning
Vehicles[J].
IEEE
for
Autonomous Underwater
Transactions
Communications, 2025, 24(8): 7046-7061.
on
Wireless
[26] STOJANOVIC M. On the relationship between capacity
and distance in an underwater acoustic communication
channel[J]. Mobile Computing and Communications
Review, 2007, 11(4): 34-43.
[27] ULUCAN O, KARAKAYA D H, TURKAN M. A
Large-Scale
Dataset
for
Fish Segmentation and
Classification[C]//Proceedings of 2020 Innovations in
Intelligent Systems and Applications Conference (ASYU).
Istanbul, Turkey: IEEE Press, 2020: 1-5
|