[1] Liu H, Yang D, Liu X, et al. Todynet: temporal dynamic graph neural network for multivariate time series classification[J]. Information Sciences, 2024, 677: 120914.
[2] Eldele E, Ragab M, Chen Z, et al. Self-supervised contrastive representation learning for semi-supervised time-series classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 15604-15618.
[3] Dempster A, Schmidt D F, Webb G I. Hydra: Competing convolutional kernels for fast and accurate time series classification[J]. Data Mining and Knowledge Discovery, 2023, 37(5): 1779-1805.
[4] Wen Q, Sun L, Yang F, et al. Time series data augmentation for deep learning: A survey[J]. arXiv preprint arXiv:2002.12478, 2020.
[5] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16: 321-357.
[6] Ma Q, Zheng Z, Zheng J, et al. Joint-label learning by dual augmentation for time series classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(10): 8847-8855.
[7] He H, Garcia E A. Learning from imbalanced data[J]. IEEE Transactions on knowledge and data engineering, 2009, 21(9): 1263-1284.
[8] 葛轶洲, 许翔, 杨锁荣, 等. 序列数据的数据增强方法综述[J]. Journal of Frontiers of Computer Science & Technology, 2021, 15(7).
(Yizhou Ge, Xiang Xu, Suorong Yang, et al. “A Survey of Data Augmentation Methods for Sequential Data,” Journal of Frontiers of Computer Science & Technology, 2021, 15(7).)
[9] 陈刚, 郭晓梅. 基于时间序列模型的非平衡数据的过采样算法[J]. Information & Control, 2021 (5).
(Gang Chen, Xiaomei Guo, “An Oversampling Algorithm for Imbalanced Data Based on Time-Series Models,” Information and Control, 2021(5).)
[10] 张永清, 卢荣钊, 乔少杰, 等. 一种基于样本空间的类别不平衡数据采样方法[J]. 自动化学报, 2022, 48(10): 2549-2563.
(Yongqing Zhang, Rongzhao Lu, Shaojie Qiao, et al. “A Sampling Method for Class-Imbalanced Data Based on Sample Space,” Acta Automatica Sinica, 2022, 48(10): 2549–2563.)
[11] Cao H, Li X L, Woon Y K, et al. SPO: Structure preserving oversampling for imbalanced time series classification[C]//2011 IEEE 11th international conference on data mining. IEEE, 2011: 1008-1013.
[12] Cao H, Li X L, Woon D Y K, et al. Integrated oversampling for imbalanced time series classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(12): 2809-2822.
[13] Wang H. Three-Stage Sampling Algorithm for Highly Imbalanced Multi-Classification Time Series Datasets[J]. Symmetry, 2023, 15(10): 1849.
[14] Berndt D J, Clifford J. Using dynamic time warping to find patterns in time series[C]//Proceedings of the 3rd international conference on knowledge discovery and data mining. 1994: 359-370.
[15] Wen J, Angryk R A. Class-Based Time Series Data Augmentation to Mitigate Extreme Class Imbalance for Solar Flare Prediction[C]//International Conference on Artificial Intelligence and Soft Computing. Cham: Springer Nature Switzerland, 2024: 362-375.
[16] Tian T, Miao C, Qian H. FreRA: A Frequency-Refined Augmentation for Contrastive Learning on Time Series Classification[C]//Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2. 2025: 2835-2846.
[17] Doersch C, Gupta A, Efros A A. Unsupervised visual representation learning by context prediction[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1422-1430.
[18] Dan J, Liao X, Xu L, et al. A joint label-enhanced representation based on pre-trained model for charge prediction[C]//CCF International Conference on Natural Language Processing and Chinese Computing. Cham: Springer International Publishing, 2022: 694-705.
[19] Peng Q, Tang Z, Yao X, et al. A Flexible Generative Model for Joint Label-Structure Estimation from Multifaceted Graph Data[C]//International Conference on Knowledge Science, Engineering and Management. Cham: Springer Nature Switzerland, 2023: 366-378.
[20] Wu H, Hu T, Liu Y, et al. Timesnet: Temporal 2d-variation modeling for general time series analysis[J]. arXiv preprint arXiv:2210.02186, 2022.
[21] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[22] Graves A, Graves A. Long short-term memory[J]. Supervised sequence labelling with recurrent neural networks, 2012: 37-45.
[23] Douzas G, Bacao F, Last F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE[J]. Information sciences, 2018, 465: 1-20.
[24] Wang A X, Chukova S S, Nguyen B P. Synthetic minority oversampling using edited displacement-based k-nearest neighbors[J]. Applied Soft Computing, 2023, 148: 110895.
[25] Islam A, Belhaouari S B, Rehman A U, et al. KNNOR: An oversampling technique for imbalanced datasets[J]. Applied soft computing, 2022, 115: 108288.
[26] Ryu H, Yoon S, Yoon H S, et al. Simpsi: A simple strategy to preserve spectral information in time series data augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(13): 14857-14865.
|