[1] 樊丁, 胡桉得, 黄健康, 等. 基于改进卷积神经网络的管焊缝X射线图像缺陷识别方法[J]. 焊接学报, 2020, 41(1): 7-11. (FAN Ding, HU Yude, HUANG Jianxian, et al. Defect Identification Method for X-ray Image of Pipe Weld Based on Improved Convolutional Neural Network[J]. Journal of Welding Science, 2020, 41(1): 7-11.)
[2] HUANG X, WANG P, ZHANG S, et al. Structural health monitoring and material safety with multispectral technique: A review[J]. Journal of Safety Science and Resilience, 2022, 3(1): 48-60.
[3] 徐建军, 石巍. 金属管道对接焊缝超声检测缺陷类型识别研究[J]. 世界有色金属, 2022(5): 226-228. (XU Jianjun, SHI Wei. Research on Defect Type Identification in Ultrasonic Testing of Butt Welds of Metal Pipelines[J]. World Nonferrous Metals, 2022(5): 226-228.)
[4] LI C Y, GUO C L, HAN L H, et al. Lighting the darkness in the deep learning era[J]. arXiv preprint arXiv:2104.10729, 2021.
[5] 林森, 周天飞. 双透射率成像模型与Retinex融合的水下图像清晰化[J]. 科学技术与工程, 2021, 21(18):7627-7634. (LIN Sen, ZHOU Tianfei. Underwater image clarity fused with dual transmittance imaging model and Retinex[J].Science Technology and Engineering,2021,21(18):7627-7634.)
[6] 李启明,阙祖航.基于改进YOLOv5的X射线图像危险品检测[J]. 科学技术与工程,2023,23(4):1598-1606. (LI Qiming, QUE Zuhang. X-ray image dangerous goods detection based on improved YOLOv5[J]. Science Technology and Engineering,2023,23(4):1598-1606.)
[7] 颜承壮,皇攀凌,周军,等.基于改进多尺度Retinex的墙体开槽机器人目标检测与定位[J].科学技术与工程,2023,23(36):15530-15537. (YAN Chengzhuang, HUANG Panling, ZHOU Jun, et al. Target detection and localization of wall slotting robot based on improved multi-scale Retinex[J]. Science Technology and Engineering,2023,23 (36):15530-15537.)
[8] 何磊, 易遵辉, 谢永芳,等.基于Retinex先验引导的低光照图像快速增强方法[J]. 自动化学报,2024,50(5):1035-1046. (HE Lei, YI Zunhui, XIE Yongfang, et al. Fast enhancement method of low-light image based on Retinex prior guidance[J].Acta Automatica Sinica,2024,50(5):1035-1046.)
[9] WANG S, ZHENG J, HU H M. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9):3538-3548.
[10] GUO X, LI Y, LING H. LIME:Low-light image enhancement via illumination map estimation[J].IEEE Transactions on Image Processing,2017,26(2):982-993.
[11] FAN G D,FAN B,GAN M, et al. Multiscale low-light image enhancement network with illumination constraint[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022,32(11):7403-7417.
[12] ZHAO Z J,XIONG B S,WANG L,et al. RetinexDIP:A unified deep framework for low-light image enhancement[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022,32(3):1076-1088.
[13] WEI C,WANG W J,YANG W H,et al. Deep retinex decomposition for low-light enhancement[J/OL]. arXiv preprint arXiv:1808.04560, 2018.
[14] CAI Y, BIAN H, LIN J, et al. Retinexformer: One-stage Retinex-based transformer for low-light image enhancement[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris, France: IEEE, 2023: 12504-12513.
[15] WANG T, ZHANG K, SHEN T, et al. Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and Transformer-Based Method[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washington D. C., USA: AAAI Press, 2023: 2654-2662.
[16] WANG W, YANG H, FU J, LIU J. Zero-reference low-light enhancement via physical quadruple priors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2024: 26057-26066.
[17] XU X, ZHANG X, ZHANG T. Lite-Yolov5: A lightweight deep learn ing detector for on-board ship detection in large-scene Sentinel-1 Sar images[J]. Remote Sensing, 2022, 14(4): 10-18.
[18] LIANG H, SEO S. Lightweight deep learning for road environment recognition[J]. Applied Sciences, 2022, 12(6): 31-68.
[19] RAZFAR N, TRUE J, BASSIOUNY R, et al. Weed detection in soybean crops using custom lightweight deep learning models[J]. Journal of Agriculture and Food Research, 2022, 8: 100308.
[20] LIU M, CHEN Y, XIE J, et al. LF-YOLO: A lighter and faster YOLO for weld defect detection of X-ray image[J]. IEEE Sensors Journal, 2023, 23(7): 7430-7439.
[21] CHEN L C, ZHU Y, PAPANDREOU G, SCHROFF F, ADAM H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018: 833-851.
[22] XIE E, WANG W, YU Z, ANANDKUMAR A, Alvarez J M, LUO P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers[C]//Advances in Neural Information Processing Systems (NeurIPS). Virtual: Curran Associates, Inc., 2021.
[23] KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris, France: IEEE, 2023: 4015-4026.
[24] LI J, WANG X, ZHANG Y, et al. FusionU-Net: U-Net with Enhanced Skip Connection for Pathology Image Segmentation[C]//Proceedings of Machine Learning Research, 2024, 222: 1-10.
[25] WANG J, CHEN K, XU R, et al. CARAFE: Content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, South Korea: IEEE, 2019: 3007-3016.
[26] MERY D, et al. GDXray: The database of X-ray images for nondestructive testing[J]. Journal of Nondestructive Evaluation, 2015, 34(4): 42.
[27] QIN X, ZHANG Z, HUANG C, et al. U2-Net: Going deeper with nested U structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404.
|