[1] 黄利欣, 刘旭海, 孙萍. 在线检测技术在中成药生产中的应用展望[J]. 亚太传统医药, 2022, 18(08): 208-212.
HUANG L X, LIU X H, SUN P. Application prospect of online detection technology in production of Chinese patent medicine[J]. Asia-Pacific Traditional Medicine, 2022, 18(08): 208-212. (in Chinese)
[2] 冷胡峰, 龙勇涛, 万小伟. 中药智能提取在线检测技术的应用[J]. 机电信息, 2022, (02):63-65.
LENG H F, LONG Y T, WAN X W. Application of online detection method for intelligent extraction of Chinese medicine[J]. Mechanical and Electrical Information, 2022, (02): 63-65. (in Chinese)
[3] 黄细聪, 周峰, 吴建, 等. 机器视觉检测技术在圆筒造球机粒度检测中的应用[J]. 矿业工程, 2023, 21(03): 67-69.
HUANG X C, ZHOU F, WU J, et al. Application of machine vision detection technology in particle size detection of drum pelletizer[J]. Mining Engineering, 2023, 21(03): 67-69. (in Chinese)
[4] 胡鹏飞. 基于机器视觉的玉米粉碎粒度检测方法研究[D]. 呼和浩特: 内蒙古农业大学, 2023.
HU P F. Research on particle size detection method of corn pulverization based on machine vision[D]. Hohhot: Inner Mongolia Agricultural University, 2023. (in Chinese)
[5] 张建立, 冯小雨, 张建强. 提升小波和分水岭算法在矿石粒度检测中的应用[J]. 机械设计与制造, 2022, (06): 290-294.
ZHANG J L, FENG X Y, ZHANG J Q. Application of lifting wavelet and watershed algorithm in ore particle size detection[J]. Machinery Design & Manufacture, 2022, (06): 290-294. (in Chinese)
[6] 冯小雨. 矿石粒度图像的研究与分析[D]. 郑州: 郑州大学, 2021.
FENG X Y. Research and analysis of ore granularity image[D]. Zhengzhou: Zhengzhou University, 2021. (in Chinese)
[7] MA W, WANG L, JIANG T, et al. Overlapping pellet size detection method based on marker watershed and GMM image segmentation[J]. Metals, 2023, 13(2): 327.
[8] 刘计尊. 钢铁物料粒度智能检测方法研究[D]. 秦皇岛: 燕山大学, 2023.
LIU J Z. Research on intelligent detection method of steel material particle size[D]. Qinhuangdao: Yanshan University, 2023. (in Chinese)
[9] 秦宋林, 吕鹏, 陈嘉浩, 等. 基于半监督学习的端到端砂石细粒度检测方法[J]. 采矿技术, 2023, 23(05): 229-233.
QIN S L, LV P, CHEN J H, et al. A semi-supervised end-to-end fine-grained detection method for sand and gravel[J]. Mining Technology, 2023, 23(05): 229-233. (in Chinese)
[10] 陈嘉浩. 砂石粒度检测系统的设计与实现[D]. 哈尔滨: 哈尔滨工业大学, 2022.
CHEN J H. Design and implementation of mineral granularity detection system[D]. Harbin: Harbin Institute of Technology, 2022. (in Chinese)
[11] 顾同成, 徐武彬, 李冰, 等. 基于YOLOv5的装载机物料细粒度检测优化算法[J]. 计算机集成制造系统, 2024, 30(01): 239-252.
GU T C, XU W B, LI B, et al. Optimization algorithm for fine-grained detection of loader materials based on YOLOv5[J]. Computer Integrated Manufacturing Systems, 2024, 30(01): 239-252. (in Chinese)
[12] 李艺萌. 基于图像处理的生球粒度检测及造球加水量控制[D]. 包头: 内蒙古科技大学, 2023.
LI Y M. Particle size detection of green ball based on image processing and pelletizing water addition control[D]. Baotou: Inner Mongolia University of Science and Technology, 2023. (in Chinese)
[13] 张琳琛. 基于深度学习的烧结混合料粒度模型研究[D]. 唐山: 华北理工大学, 2023.
ZHANG L C. Study on granularity model of sintering mixture based on deep learning[D]. Tangshan: North China University of Science and Technology, 2023. (in Chinese)
[14] 张津晨. 基于MES的水泥颗粒图像法检测研究[D]. 绵阳: 西南科技大学, 2022.
ZHANG J C. Research on cement particle image detection based on MES[D]. Mianyang: Southwest University of Science and Technology, 2022. (in Chinese)
[15] 李冬艳. 基于卷积神经网络的煤尘粒度检测方法研究[D]. 西安: 西安科技大学, 2022.
LI D Y. Research on coal dust particle size detection method based on convolutional neural network[D]. Xi’an: Xi’an University of Science and Technology, 2022. (in Chinese)
[16] 王仁超, 连嘉欣, 邸阔. 结合深度学习和NCFS算法的堆石料粒度分布智能检测方法[J]. 水利学报, 2021, 52(09): 1103-1115.
WANG R C, LIAN J X, DI K. Intelligent detection method of rockfill particle size distribution based on deep-learning and NCFS algorithm[J]. Journal of Hydraulic Engineering, 2021, 52(09): 1103-1115. (in Chinese)
[17] LIU J, JIANG Z, GUI W, et al. A novel particle size detection system based on RGB-laser fusion segmentation with feature dual-recalibration for blast furnace materials[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10): 10690-10699.
[18] WANG Z, LI D, ZHENG X, et al. A novel coal dust characteristic extraction to enable particle size analysis[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-12.
[19] KHANAM R,HUSSAIN M. YOLOv11: An overview of the key architectural enhancements [EB/OL]. [2024-10-23]. https://arxiv.org/abs/2410.17725v1.
[20] QIN Z, LI X, YAN L, et al. Real-time detection of Angelica dahurica tablet using YOLOX_am[J]. Journal of Food Process Engineering, 2023, 46(12): e14480.
[21] 尹向雷,解永芳,屈少鹏, 等. 基于动态蛇形卷积和非跨步卷积的绝缘子缺陷检测[J]. 电力系统保护与控制, 2024, 52(20): 177-187.
YIN X L, XIE Y F, QU S P, et al. Insulator defect detection based on dynamic snake convolution and space-to-depth convolution[J]. Power System Protection and Control, 2024, 52(20): 177-187. (in Chinese)
[22] ZHENG X, QIU Y, ZHANG G, et al. ESL-YOLO: Small object detection with effective feature enhancement and spatial-context-guided fusion network for remote sensing[J]. Remote Sensing, 2024, 16(23): 4374.
[23] CHEN J, ER M J. Dynamic YOLO for small underwater object detection[J]. Artificial Intelligence Review, 2024, 57(7): 165.
[24] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: A survey[J]. Computational Visual Media, 2022, 8(3): 331-368.
[25] WANG Q,WU B,ZHU P,et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 11534-11542.
[26] HOU Q,ZHOU D,FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 13713-13722.
[27] SUNKARA R,LUO T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD). Berlin, Germany: Springer, 2022: 443-459.
[28] LI D, WANG Z, CHEN Y, et al. A survey on deep active learning: Recent advances and new frontiers[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 36(4): 5879-5899.
[29] LIU C, WEI S, ZHONG S, et al. YOLO-Powerlite: a lightweight YOLO model for transmission line abnormal target detection[J]. IEEE Access, 2024.
[30] REDMON J,FARHADI A. YOLOv3: An incremental improvement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2018: 1-6.
[31] KHANAM R,HUSSAIN M. What is YOLOv5: A deep look into the internal features of the popular object detector[EB/OL]. [2024-07-30]. https://arxiv.org/abs/2407. 20892v1.
[32] LI C,LI L,JIANG H,et al. YOLOv6: A single-stage object detection framework for industrial applications[EB/OL]. [2022-09-07]. https://arxiv.org/abs/ 2209.02976v1.
[33] WANG C Y,BOCHKOVSKIY A,LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 7464-7475.
[34] VARGHESE R, SAMBATH M. Yolov8: A novel object detection algorithm with enhanced performance and robustness[C]∥Proceedings of the International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS). Washington D.C., USA: IEEE Press, 2024: 1-6.
[35] JI C L,YU T,GAO P,et al. YOLO-TLA: An efficient and lightweight small object detection model based on YOLOv5[J]. Journal of Real-Time Image Processing, 2024, 21(4): 141.
[36] ZENG S,YANG W,JIAO Y,et al. SCA-YOLO: A new small object detection model for UAV images[J]. The Visual Computer, 2024, 40(3): 1787-1803.
|