[1]Liu Ye, Li Hui, Garcia-Duran Alberto, et al. MMKG: multi-modal knowledge graphs[C]//The semantic web: 16th international conference, ESWC 2019. Berlin, Heidelberg: Springer Verlag, 2019: 459-474.
[2]Chen Muhao, Shi Weijia, Zhou Ben, et al. Cross-lingual Entity Alignment with Incidental Supervision[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Stroudsburg, PA: ACL. 2021: 645-658.
[3]Sun Zequn, Zhang Qingheng, Hu Wei, et al. A benchmarking study of embedding-based entity alignment for knowledge graphs[J]. Proceedings of the VLDB Endowment, 2020, 13(12): 2326-2340.
[4]Chen Zhuo, Chen Jiaoyan, Zhang Wen, et al. Meaformer: Multi-modal entity alignment transformer for meta modality hybrid[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York, NY: ACM. 2023: 3317-3327.
[5]Chen Zhuo, Guo Lingbing, Fang Yin, et al. Rethinking uncertainly missing and ambiguous visual modality in multi-modal entity alignment[C]//International Semantic Web Conference. Cham: Springer Nature Switzerland. 2023: 121-139.
[6]Jiang Xuhui, Shen Yinghua, Shi Zhichao, et al. MM-ChatAlign: A Novel Multimodal Reasoning Framework based on Large Language Models for Entity Alignment[C]//Findings of the Association for Computational Linguistics: EMNLP 2024. Stroudsburg, PA: ACL. 2024: 2637-2654.
[7]Chen Liyi, Li Zhi, Xu Tong, et al. Multi-modal siamese network for entity alignment[C]//Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining. New York, NY: ACM. 2022: 118-126.
[8]Bordes Antoine, Usunier Nicolas, Garcia-Duran Alberto, et al. Translating Embeddings for Modeling Multi-relational Data[C]//Neural Information Processing Systems (NIPS). 2013: 1-9.
[9]Li Qian, Guo Sgu, Luo Yangyifei, et al. Attribute-consistent knowledge graph representation learning for multi-modal entity alignment[C]//Proceedings of the ACM Web Conference 2023. New York, NY: ACM. 2023: 2499-2508.
[10]Li Yangning, Chen Jiaoyan, Li Yinghui, et al. Vision, deduction and alignment: An empirical study on multi-modal knowledge graph alignment[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE. 2023: 1-5.
[11]Lin Zhenxi, Zhang Ziheng, Wang Meng, et al. Multi-modal Contrastive Representation Learning for Entity Alignment[C]//Proceedings of the 29th International Conference on Computational Linguistics. Cham: Springer. 2022: 2572-2584.
[12]Li Qian, Ji Cheng, Guo Shu, et al. Multi-Modal Knowledge Graph Transformer Framework for Multi-Modal Entity Alignment[C]//Findings of the Association for Computational Linguistics: EMNLP 2023. 2023: 987-999.
[13]Su Taoyu, Zhang Xinghua, Sheng Jiawei, et al. LoginMEA: Local-to-Global Interaction Network for Multi-modal Entity Alignment[M]//ECAI 2024. Ohmsha: IOS Press, 2024: 1173-1180.
[14]Wang, Luyao., Qi, Pengnian., Bao, Xigang, et al. Pseudo-Label Calibration Semi-supervised Multi-Modal Entity Alignment[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 38(8), 9116-9124.
[15]Xu Baogui, Xu Chengjinx, Su Bing . Cross-Modal Graph Attention Network for Entity Alignment[C]//Proceedings of the 31st ACM International Conference on Multimedia (MM '23). Association for Computing Machinery, New York, NY, USA, 3715–3723.
[16]李华昱,王翠翠,张智康,等. 基于多级特征融合和强化学习的多模态实体对齐 [J]. 中文信息学报, 2024, 38 (09): 36-47.
Li Huayu, Wang Cuicui, Zhang Zhikang, et al. Multi-modal Entity Alignment Based on Multi-level Feature Fusion and Reinforcement Learning[J]. Journal of Chinese Information Processing. 2024, 38(9): 36-47.
[17]任楚岚,于振坤,关超,等. 基于自适应融合技术的多模态实体对齐模型 [J]. 计算机应用研究, 2025, 42 (01): 100-105. DOI:10.19734/j.issn.1001-3695.2024.05.0187.
Ren Chulan, Yu Zhenkun, Guan Chao, et al. Multi-modal entity alignment model based on adaptive fusion technology [J]. Application Research of Computers, 2025, 42 (1): 100-105.
[18]Wang Yuangyi, Sun Haifeng, Wang Jiabo, et al. Towards semantic consistency: Dirichlet energy driven robust multi-modal entity alignment[C]//2024 IEEE 40th International Conference on Data Engineering (ICDE). IEEE, 2024: 3559-3572.
[19]冯广,郑润庭,刘天翔,等.基于生成对抗网络与渐进式融合的多模态实体对齐[J].计算机应用研究, 2025, 42(6):1632-1640.DOI:10.19734/j.issn.1001-3695.2024.11.0467.
Feng Guang, Zheng Runting, Liu Tianxiang, et al. Multimodal entity alignment based on dual-generator shared-adversarial network [J]. Application Research of Computers, 2025, 42 (6): 1632-1640.
[20]Huang Yani, Zhang Xuefei, Zhang Richong, et al. Progressively Modality Freezing for Multi-Modal Entity Alignment[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL. 2024: 3477-3489.
[21]Zhang Rui, Su Yixin, Trisedya Bayu Distianwan, et al. Autoalign: fully automatic and effective knowledge graph alignment enabled by large language models[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 36(6): 2357-2371.
[22]Chen Shengyuan, Zhang Qinggang, Dong Junnan, et al. Entity alignment with noisy annotations from large language models[J]. Advances in Neural Information Processing Systems, 2024, 37: 15097-15120.
[23]Yang Linyao, Chen Hongyang, Wang Xiao, et al. Two heads are better than one: Integrating knowledge from knowledge graphs and large language models for entity alignment[J]. arXiv preprint arXiv:2401.16960, 2024.
[24]Jiang Xuhui, Shen Yinghua, Shi Zhichao, et al. Unlocking the Power of Large Language Models for Entity Alignment[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL. 2024: 7566-7583.
[25]Jiang Xuhui, Xu Chengjin, Shen Yinghan, et al. Rethinking gnn-based entity alignment on heterogeneous knowledge graphs: New datasets and a new method[J]. CoRR, 2023.
[26]Liu Yinhan, Ott Myle, Goyal Naman, et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach[J]. arXiv preprint arXiv:1907.11692.
[27]Hu Edward, Shen Yelong, Wallis Phillip, et al. Lora: Low-rank adaptation of large language models[C]// International Conference on Learning Representations (ICLR). 2022(10): 1-13.
[28]Zeng Aohan, Xu Bin, Wang Bowen, et al. ChatGLM: A family of large language models from GLM-130B to GLM-4 All Tools[R/OL]. (2024-06-18)[2024-10-20]. https://arxiv.org/abs/2406.12793.
[29]Velickovic Petar, Cucurull Guillem, Casanova Arantxa, et al. Graph attention networks[C]//International Conference on Learning Representations. 2018(6): 1-13.
[30]Simonyan Karen, Zisserman Andrew. Very deep convolutional networks for large-scale image recognition[C]// International Conference on Learning Representations (ICLR). 2015, 3: 1150-1210.
[31]Radford Alec, Kim Jong Wook, Hallacy Chris, et al. Learning transferable visual models from natural language supervision[C]//International conference on machine learning. New York, NY: ACM. PmLR, 2021: 8748-8763.
[32]Wang Peng, Bai Shuai, Tan Sinan, et al. Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution[R/OL]. (2024-09-17)[2025-11-11]. https://arxiv.org/abs/2409.12191.
[33]Wang Cunda, Wang Weihua, Li Xinyun, et al.OTMEA : Multi-modal Entity Alignment via Optimal Transport[C]//ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).0[2025-10-12].DOI:10.1109/ICASSP49660.2025.10889745.
[34]Zhang Yan, Luo Xiangyu, Hu Jing, et al. Graph structure prefix injection transformer for multi-modal entity alignment[J].Information Processing & Management, 2025, 62(3):104048.DOI:10.1016/j.ipm.2024.104048.
[35]Yang An, Yang Baosong, Hui Bingyuan, et al. Qwen2 Technical Report[R/OL]. (2024-07-15)[2025-11-11]. https://arxiv.org/abs/2407.10671.
[36]Touvron Hugo, Martin Louis, Stone Kevin, et al. Llama 2: Open Foundation and Fine-Tuned Chat Models[EB/OL]. (2023-07-18)[2025-11-11]. https://arxiv.org/abs/2307.09288.
|