[1] 李美成, 高中亮, 王龙泽, 等. “双碳”目标下我国太阳能利用技术的发展现状与展望[J]. 太阳能, 2021(11): 13-18.
Li Meicheng, Gao Zhongliang, Wang longze, et al. Development status and prospect of solar energy utilization technology in
China under goal of emission peak and carbon neutrality[J]. Solar Energy, 2021(11): 13-18.
[2] 李军军, 吴政球, 谭勋琼, 等. 风力发电及其技术发展综述[J]. 电力建设, 2011, 32(08): 64-72.
Li Junjun, Wu Zhengqiu, Tan Xunqiong, et al. Review of Wind Power Generation and Relative technology Development[J].
Electric Power Construction, 2011, 32(08): 64-72.
[3] DONG C, LOY C C, HE K, et al. Learning a Deep Convolutional Network for Image Super-Resolution[C]//FLEET D, PAJDLA
T, SCHIELE B, et al. Computer Vision – ECCV 2014. Cham: Springer International Publishing, 2014: 184-199.
[4] VANDAL T, KODRA E, GANGULY S, et al. DeepSD: Generating High Resolution Climate Change Projections through Single
Image Super-Resolution[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. New York, NY, USA: Association for Computing Machinery, 2017: 1663-1672.
[5] PASSARELLA L S, MAHAJAN S, PAL A, et al. Reconstructing High Resolution ESM Data Through a Novel Fast Super
Resolution Convolutional Neural Network (FSRCNN)[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097571.
[6] DONG C, LOY C C, TANG X. Accelerating the Super-Resolution Convolutional Neural Network[C]//LEIBE B, MATAS J,
SEBE N, et al. Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 391-407.
[7] PAN B, HSU K, AGHAKOUCHAK A, et al. Improving Precipitation Estimation Using Convolutional Neural Network[J]. Water
Resources Research, 2019, 55(3): 2301-2321.
[8] MU B, QIN B, YUAN S, et al. A Climate Downscaling Deep Learning Model considering the Multiscale Spatial Correlations and
Chaos of Meteorological Events[J]. Mathematical Problems in Engineering, 2020, 2020(1): 7897824.
[9] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//NAVAB N,
HORNEGGER J, WELLS W M, et al. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham:
Springer International Publishing, 2015: 234-241.
[10] HÖHLEIN K, KERN M, HEWSON T, et al. A comparative study of convolutional neural network models for wind field
downscaling[J]. Meteorological Applications, 2020, 27(6): e1961.
[11] SUN A Y, TANG G. Downscaling Satellite and Reanalysis Precipitation Products Using Attention-Based Deep Convolutional
Neural Nets[J]. Frontiers in Water, 2020, 2.
[12] HARDER P, HERNANDEZ-GARCIA A, RAMESH V, et al. Hard-Constrained Deep Learning for Climate Downscaling[J].
Journal of Machine Learning Research, 2023, 24(365): 1-40.
[13] STENGEL K, GLAWS A, HETTINGER D, et al. Adversarial super-resolution of climatological wind and solar data[J].
Proceedings of the National Academy of Sciences, 2020, 117(29): 16805-16815.
[14] CHENG J, LIU J, KUANG Q, et al. DeepDT: Generative Adversarial Network for High-Resolution Climate Prediction[J]. IEEE
Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[15] 丁子轩, 俞雷, 张娟, 等. 基于深度残差自适应注意力网络的图像超分辨率重建[J]. 计算机工程, 2023, 49(05): 231-238.
Ding Zixuan, Yu Lei, Zhang Juan, et al. Image Super-Resolution Reconstruction Based on Depth Residual Adaptive Attention
Network[J]. Computer Engineering, 2023, 49(05): 231-238.
[16] 范文卓, 吴涛, 许俊平, 等. 基于多分辨率特征融合的任意尺度图像超分辨率重建[J]. 计算机工程, 2023, 49(09): 217-225.
Fan Wenzhuo, Wu Tao, Xu Junping, et al. Image Super-Resolution Reconstruction Based on Depth Residual Adaptive Attention
Network[J]. Computer Engineering, 2023, 49(09): 217-225.
[17] 张法正, 杨娟, 汪荣贵, 等. 基于动态自适应层叠网络的轻量化图像超分辨率重建[J]. 计算机工程, 2022, 48(12): 196-202.
Zhang Fazheng, Yang Juan, Wang Ronggui, et al. Lightweight Image Super-Resolution Reconstruction Based on Dynamic
Adaptive Cascade Network[J]. Computer Engineering, 2022, 48(12): 196-202.
[18] ZHANG Y, LI K, LI K, et al. Image Super-Resolution Using Very Deep Residual Channel Attention Networks[C]//Proceedings of
the European Conference on Computer Vision (ECCV). 2018: 286-301.
[19] GU J, LU H, ZUO W, et al. Blind Super-Resolution With Iterative Kernel Correction[C]//Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019: 1604-1613.
[20] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017: 105-114.
[21] WANG X, YU K, WU S, et al. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks[C]//Proceedings of the
European Conference on Computer Vision (ECCV) Workshops. 2018: 0-0.
[22] CHEN Y, LIU S, WANG X. Learning Continuous Image Representation With Local Implicit Image Function[C]//Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 8628-8638.
[23] RAY A, KUMAR G, KOLEKAR M H. CFAT: Unleashing Triangular Windows for Image Super-resolution[C]//Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 26120-26129.
[24] LI Z, LI M, FAN J, et al. Learning Dual-Level Deformable Implicit Representation for Real-World Scale Arbitrary
Super-Resolution[C]//LEONARDIS A, RICCI E, ROTH S, et al. Computer Vision – ECCV 2024. Cham: Springer Nature
Switzerland, 2025: 352-368.
[25] WANG X, XIE L, DONG C, et al. Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic
Data[C]//2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). 2021: 1905-1914.
[26] SHI D. TransNeXt: Robust Foveal Visual Perception for Vision Transformers[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2024: 17773-17783.
[27] European Centre for Medium-Range Weather Forecasts. ECMWF IFS high-resolution operational forecasts[Z]. Boulder CO:
Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory,
2016.
[28] Copernicus Climate Change Service. ERA5 hourly data on pressure levels from 1940 to present[DS/OL]. Copernicus Climate
Change Service (C3S) Climate Data Store (CDS), 2018. https://cds.climate.copernicus.eu/doi/10.24381/cds.bd0915c6.
[29] LIANG J, CAO J, SUN G, et al. SwinIR: Image Restoration Using Swin Transformer[C]//Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021: 1833-1844.
[30] 余典, 李坤, 张玮, 等. 可解译深度网络的多光谱遥感图像融合[J]. 中国图象图形学报, 2023, 28(01): 290-304.
Dian Yu, Kun Li, Wei Zhang, Duidui Li, Xin Tian, Hao Jiang. Deep network-interpreted multispectral image fusion in remotesensing[J]. Journal of image and graphics, 2023, 28(1): 290-304.
|