[1] Glauner P, Meira J A, Valtchev P, et al. The challenge of non-technical loss detection using artificial intelligence: A survey[J]. International journal of computational intelligence systems, 2017, 10(1): 760-775.
[2] Gunturi S K, Sarkar D. Ensemble machine learning models for the detection of energy theft[J]. Electric Power Systems Research, 2021, 192: 106904.
[3] 王寅超,陈博,俞俊霞,等.基于改进CNN-GRU模型的短期电力负荷预测研究[J/OL].计算机工程,1-9[2025-07-30].https://doi.org/10.19678/j.issn.1000-3428.0070109.
WANG Y C, CHEN B, YU J X, et al. Research on short-term electricity load forecasting based on improved CNN-GRU model[J/OL]. Computer Engineering,1-9[2025-07-30]. https://doi.org/10.19678/j.issn.1000-3428.0070109.
[4] Zheng Z, Yang Y, Niu X, et al. Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids[J]. IEEE Transactions on Industrial Informatics, 2017, 14(4): 1606-1615.
[5] Liao W, Yang Z, Liu K, et al. Electricity theft detection using Euclidean and graph convolutional neural networks[J]. IEEE Transactions on Power Systems, 2022, 38(4): 3514-3527.
[6] 张春昊,解滨,张佳豪.融合改进VAE与BiLSTM的无监督时序数据异常检测方法[J/OL].计算机工程,1-14[2025-07-30]. https://doi.org/10.19678/j.issn.1000-3428.0070335.
Zhang C H, XIE B, ZHANG J H. A Hybrid Methodof Improved VAE and BiLSTM for Unsupervised Time Series Anomaly Detection[J/OL]. Computer Engineering, 1-14[2025-07-30].https://doi.org/10.19678/j.issn.1000-3428.0070335.
[7] Jindal A, Dua A, Kaur K, et al. Decision tree and SVM-based data analytics for theft detection in smart grid[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 1005-1016.
[8] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[9] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16: 321-357.
[10] Pereira J, Saraiva F. Convolutional neural network applied to detect electricity theft: A comparative study on unbalanced data handling techniques[J]. International Journal of Electrical Power & Energy Systems, 2021, 131: 107085.
[11] Liu C L, Chang Y H. Learning from imbalanced data with deep density hybrid sampling[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(11): 7065-7077.
[12] Liao W, Zhu R, Ge L, et al. Mitigating class imbalance issues in electricity theft detection via a sample-weighted loss[J]. IEEE Transactions on Industrial Informatics, 2024.
[13] Li J, Liao W, Yang R, et al. A data augmentation method for distributed photovoltaic electricity theft using wasserstein generative adversarial network[C]//2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2021: 3132-3137.
[14] Guo M F, Liu W L, Gao J H, et al. A data-enhanced high impedance fault detection method under imbalanced sample scenarios in distribution networks[J]. IEEE Transactions on Industry Applications, 2023, 59(4): 4720-4733.
[15] 朱春强,刘彬,朱莉.基于MDTimeGAN的序列数据生成方法[J].计算机工程,2024,50(11):59-69.
ZHU C Q, LIU B, ZHU L. Sequence Data Generation Method Based on MDTimeGAN[J]. Computer Engineering,2024,50(11):59-69.
[16] Chen Y, Wang Y, Kirschen D, et al. Model-free renewable scenario generation using generative adversarial networks[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3265-3275.
[17] Wang W, Wei H, Zhou K, et al. WGAN-GP generating wind power scenarios and using BP neural network for classification evaluation[C]//2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). IEEE, 2024: 1430-1435.
[18] Olesen J F, Shaker H R. Predictive maintenance within combined heat and power plants based on a novel virtual sample generation method[J]. Energy Conversion and Management, 2021, 227: 113621.
[19] Liang J, Tang W. Sequence generative adversarial networks for wind power scenario generation[J]. IEEE Journal on Selected Areas in Communications, 2019, 38(1): 110-118.
[20] Li Y, Zhang M, Chen C. A deep-learning intelligent system incorporating data augmentation for short-term voltage stability assessment of power systems[J]. Applied Energy, 2022, 308: 118347.
[21] Wang X, Shen Y, Song H, et al. Data Augmentation-Based Photovoltaic Power Prediction[J]. Energies, 2025, 18(3): 747.
[22] HOU R B,CHANG H, MA B P, et al. Cross attention network for few-shot classification[EB/OL].[2022-06-10].https: //arxiv.org/abs/1910.07677.
[23] 袁自勇,高曙,曹姣,等.基于异构图卷积网络的小样本短文本分类方法[J].计算机工程,2021,47(12):87-94.
YUAN Z Y, GAO S, CAO J, et al. Method for Few-Shot Short Text Classification Based on Heterogeneous Graph Convolutional Network[J].Computer Engineering,2021,47(12):87-94.
[24] Liao W, Yang Z, Bak-Jensen B, et al. Simple data augmentation tricks for boosting performance on electricity theft detection tasks[J]. IEEE Transactions on Industry Applications, 2023, 59(4): 4846-4858.
[25] Yao R, Wang N, Ke W, et al. Electricity theft detection in unbalanced sample distribution: A novel approach including a mechanism of sample augmentation[J]. Applied Intelligence, 2023, 53(9): 11162-11181.
[26] Yu Y, Si X, Hu C, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural computation, 2019, 31(7): 1235-1270.
[27] 杨生鹏,文中,丁剑,等.二次分解组合LSTM的短期风电功率预测模型[J].国外电子测量技术,2024,43(01):87-93.
YANG S P, WEN Z, DING J, et al. Short-term wind power prediction model for quadratic decompsition combined LSTM[J]. Foreign Electronic Measurement Technology,2024,43(01):87-93.
[28] Bai S, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arxiv preprint arxiv:1803.01271, 2018.
[29] He H, Bai Y, Garcia E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]//2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence). IEEE, 2008: 1322-1328.
[30] Han H, Wang W Y, Mao B H. Borderline-SMOTE: anew over-sampling method in imbalanced data sets learning[C]//International conference on intelligent computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 878-887.
[31] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN.arxiv e-prints[J]. arxiv preprint arxiv:1701.07875, 2017, 685.
[32] Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein gans[J]. Advances in neural information processing systems, 2017, 30.
[33] Li J, Chen Z, Cheng L, et al. Energy data generation with wasserstein deep convolutional generative adversarial networks[J]. Energy, 2022, 257: 124694.
[34] Tian J, Jiang Y, Zhang J, et al. A novel data augmentation approach to fault diagnosis with class-imbalance problem[J]. Reliability Engineering & System Safety, 2024, 243: 109832.
[35] Liao W, Zhu R, Yang Z, et al. Electricity theft detection using dynamic graph construction and graph attention network[J]. IEEE Transactions on Industrial Informatics, 2023, 20(4): 5074-5086.
[36] Yang M, Huang Q, Liu Y, et al. A multi-temporal granularity feature driven convolutional ensemble model for electricity theft detection[J]. Engineering Applications of Artificial Intelligence, 2025, 152: 110795.
|