[1]寇嘉敏,肖明明,吕兆峰等,面向B2B电商供需匹配优化的遗传人类学习混合算法,[J]. 系统工程, 2024年8月,知网首发(www.cnki.net).
Kou J, Xiao M, Lv Z, et al., Genetic human learning hybrid algorithm for optimizing supply and demand matching in B2B e-commerce[J]. System Engineering, 2024, Aug. CNKI online first (www.cnki.net).
[2]Kou J, Li K, Zheng L, Human learning optimization algorithm with diversified searches[J]. IEEE Open Journal of Computer Society, 2024, 5:589-598.
[3]Yin S, Xu N, Shi Z, et al. Collaborative path planning of multi-unmanned surface vehicles via multi-stage constrained multi-objective optimization[J]. Advanced Engineering Informatics, 2025, 65: 103115.
[4]Tian Y, Zhang T, Xiao J, Zhang X, Jin Y. A coevolutionary framework for constrained multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(1):102-16.
[5]Qian S, Ye Y, Jiang B, Wang J. Constrained multiobjective optimization algorithm based on immune system model[J]. IEEE transactions on cybernetics, 2015, 46(9):2056-69.
[6]Fan Z, Li W, Cai X, Li H, Wei C, Zhang Q, Deb K, Goodman E. Push and pull search for solving constrained multi-objective optimization problems[J]. Swarm and evolutionary computation, 2019, 44:665-79.
[7]Liu Z Z, Wang Y. Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5):870-884.
[8]Gupta A, Ong YS, Feng L. Multifactorial evolution: Toward evolutionary multitasking[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(3):343-57.
[9]Ming F, Gong W, Wang L, et al. Constrained multiobjective optimization via multitasking and knowledge transfer[J]. IEEE Transactions on Evolutionary Computation, 2022, 28(1):77-89.
[10]Fan, Zhun, et al. An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions[J]. Soft Computing, 2019, 23: 12491-12510.
[11]Ray T, Tai K, Seow KC. Multiobjective design optimization by an evolutionary algorithm. Engineering Optimization[J]. Engineering Optimization, 2001, 33(4):399-424.
[12]Deb K, Pratap A, Agarwal S, Meyarivan TA. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2):182-97.
[13]Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on evolutionary computation, 2000, 4(3):284-94.
[14]T. Takahama and S. Sakai. Constrained optimization by the ε constrained differential evolution with gradient-based mutation and feasible elites[C]. Procof IEEE Congresson Evolutionary Computation, 2006, pp. 1–8.
[15]Ma H, Wei H, Tian Y, Cheng R, Zhang X. A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints[J]. Information Sciences, 2021, 560:68-91.
[16]Qu BY, Suganthan PN. Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods[J]. Engineering Optimization, 2011, 43(4):403-16.
[17]Ma Z, Wang Y. Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6):972-86.
[18]袁志超,杨磊,田井林,魏晓威,李康顺.面向复杂约束多目标优化问题的双种群双阶段进化算法[J].计算机应用,2024, 1-9.
YUAN Zhichao,YANG Lei,TIAN Jinglin,WEI Xiaowei,LI Kangshun. Dual-population dual-stage evolutionary algorithm for complex constrained multiobjective optimization problems [J]. Computer Applications,2024, 1-9.
[19]He Z, Wang F, Li B, Zhou A. Constrained Multi-objective Optimization Based on Dynamic Priority and Cooperative Offspring Generation. IEEE Transactions on Evolutionary Computation. 2025.
[20]徐赛娟,裴镇宇,林佳炜,等.基于多阶段搜索的约束多目标进化算法[J].计算机应用, 2023, 43(08).2345-2351.
Saijuan Xu, Zhenyu Pei, Jiawei Lin, et al. Constrained multi-objective evolutionary algorithm based on multi-stage search[J]. Computer Applications, 2023, 43(08):2345-2351.
[21]Gupta A, Ong YS, Feng L. Multifactorial evolution: Toward evolutionary multitasking[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(3):343-57.
[22]Lin J, Liu HL, Xue B, Zhang M, Gu F. Multiobjective multitasking optimization based on incremental learning[J]. IEEE Transactions on Evolutionary Computation, 2019, 24(5):824-38.
[23]Chu X, Ming F, Gong W. Competitive multitasking for computational resource allocation in evolutionary constrained multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2024.
[24]Zeng Z, Zhang X, Hong Z. A constrained multiobjective differential evolution algorithm based on the fusion of two rankings[J]. Information Sciences, 2023, 647: 119572.
[25]Qiao K, Chen Z, Qu B, et al. A dual-population evolutionary algorithm based on dynamic constraint processing and resources allocation for constrained multi-objective optimization problems[J]. Expert Systems with Applications, 2024, 238: 121707.
[26]Farias L R C, Araújo A F R. An inverse modeling constrained multi-objective evolutionary algorithm based on decomposition[C]. 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2024: 3727-3732.
[27]Deb K, Agrawal RB. Simulated binary crossover for continuous search space[J]. Complex systems, 1995, 9(2):115-48.
[28]Deb K, Goyal M. A combined genetic adaptive search (GeneAS) for engineering design[J]. Computer Science and informatics, 1996, 26:30-45.
[29]Chen M, Feng C, Cheng R. MetaDE: Evolving Differential Evolution by Differential Evolution[J]. IEEE Transactions on Evolutionary Computation, 2025.
[30] Tian Y, Wang R, Zhang Y, et al. Adaptive population sizing for multi-population based constrained multi-objective optimization[J]. Neurocomputing, 2025, 621: 129296.
[31]H. Jain, K. Deb, An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, partII: handling constraints and extending to an adaptive approach, IEEE transactions on Evolutionary Computation, 2013,(4) 602–622.
[32]Tian Y, Cheng R, Zhang X, et al. PlatEMO. A MATLAB platform for evolutionary multi-objective optimization [educational forum][J]. IEEE Computational Intelligence Magazine, 2017, 12(4):73-87.
[33]Bosman PA, Thierens D. The balance between proximity and diversity in multiobjective evolutionary algorithms[J]. IEEE transactions on Evolutionary Computation, 2003, 7(2):174-88.
[34]Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE transactions on Evolutionary Computation, 1999, 3(4):257-71.
|