[1] LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.
[2] VASWANI A, SHATIN N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998–6008.
[3] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//International Conference on Learning Representations (ICLR), Toulon, France, 2017.
[4] ZHENG C, ZHU S, MENDIETA M, et al. 3D human pose estimation with spatial and temporal transformers[C]//Proceedings o f the IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2021: 11656–11665.
[5] ZHAO Q, ZHENG C, LIU M, et al. PoseFormerV2: Exploring frequency domain for efficient and robust 3D human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2023: 8877–8886.
[6] LI W, LIU H, TANG H, et al. MHFormer: Multi-hypothesis transformer for 3D human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2022: 13147–13156.
[7] ZHANG J, TU Z, YANG J, et al. MixSTE: Seq2seq mixed spatio-temporal encoder for 3D human pose estimation in video[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2022: 13232–13242.
[8] TANG Z, QIU Z, HAO Y, et al. 3D human pose estimation with spatio-temporal criss-cross attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2023: 4790–4799.
[9] SHAN W, LIU Z, ZHANG X, et al. Diffusion-based 3D human pose estimation with multi-hypothesis aggregation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2023: 14761–14771.
[10] 刘星,王宇晶.基于双循环Transformer的三维人体姿态估计[J].传感技术学报,2024,37(07):1236-1243.
LIU X, WANG Y. 3D human pose estimation based on dual-cycle Transformer[J]. Journal of Transducer Technology, 2024, 37(07): 1236–1243.
[11] 高翔,刘韦华.融入双注意力和姿态增强的3D人体姿态估计[J].计算机仿真,2024,41(07):207-211+521.
GAO X, LIU W. 3D human pose estimation integrating dual attention and pose enhancement[J]. Computer Simulation, 2024, 41(07): 207–211+521.
[12] ZHAO L, PENG X, TIAN Y, et al. Semantic graph convolutional networks for 3D human pose regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019: 3425–3435.
[13] GADGIL S, ZHAO Q, PFEFFERBAUM A, et al. Spatio-temporal graph convolution for resting-state fMRI analysis[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII. Cham: Springer, 2020: 528–538.
[14] BANIK S, GARCÍA A M, KNOLL A. 3D human pose regression using graph convolutional network[C]//2021 IEEE International Conference on Image Processing (ICIP). New York: IEEE, 2021: 924–928.
[15] LI H, SHI B, DAI W, et al. Pose-oriented transformer with uncertainty-guided refinement for 2D-to-3D human pose estimation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023, 37(1): 1296–1304.
[16] GONG J, FOO L G, FAN Z, et al. DiffPose: Toward more reliable 3D pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2023: 13041–13051.
[17] ZHAO L, PENG X, TIAN Y, et al. Semantic graph convolutional networks for 3D human pose regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019: 3425–3435.
[18] PENG J, ZHOU Y, MOK P Y. KTPFormer: Kinematics and trajectory prior knowledge-enhanced transformer for 3D human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2024: 1123–1132.
[19] 闫永杰,李敏奇.融合图卷积与Transformer的三维人体姿态估计网络[J].自动化应用,2024,65(13):71-75+86.DOI:10.19769/j.zdhy.2024.13.020.
YAN Y, LI M. 3D human pose estimation network integrating graph convolution and Transformer[J]. Automation Application, 2024, 65(13): 71–75+86. DOI: 10.19769/j.zdhy.2024.13.020.
[20] CHEN T, FANG C, SHEN X, et al. Anatomy-aware 3D human pose estimation with bone-based pose decomposition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(1): 198–209.
[21] HSU C, JANG J R. Enhancing 3D human pose estimation with bone length adjustment[C]//Asian Conference on Computer Vision (ACCV). Cham: Springer, 2024: 3723-3738.
[22] CHEN X, XU Y, FREEMAN W, et al. 3D human pose estimation from a single image via distance matrix regression[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, USA, 2014: 1–8.
[23] CHEN Y, WANG Z, PENG Y, et al. Cascaded Pyramid Network for Multi-Person Pose Estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018: 6568–6577.
[24] IONESCU, C., PAPAVA, D., SINGH, A., et al. Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1325–1339.
[25] MEHTA D, ROGE A, GÖKBERK B, et al. 3DHP: 3D Human Pose Dataset for Monocular and Multi-view Estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2049–2058.
[26] LI W, LIU H, DING R, et al. Exploiting temporal contexts with strided transformer for 3D human pose estimation[J]. IEEE Transactions on Multimedia, 2021, 25: 1282–1293.
[27] ZHANG Y, ZHAO H, ZHANG W, et al. P-STMO: Efficient spatio-temporal modeling for 3D human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023. Los Alamitos, CA: IEEE, 2023: 18530–18539.
[28] MA J, CHEN K, ZHANG C, et al. DUE: A dual expert unified framework for 3D human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023. Los Alamitos, CA: IEEE Computer Society, 2023: 15923–15932.
[29] YU B X B, ZHANG Z, LIU Y, et al. GLA-GCN: Global-local adaptive graph convolutional network for 3D human pose estimation from monocular video[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023. New York: IEEE, 2023: 8818–8829.
[30] MEHRABAN S, ADELI V, TAATI B. MotionAGFormer: Enhancing 3D human pose estimation with a transformer-GCNFormer network[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2024. New York: IEEE, 2024: 567–576.
[31] XU J, GUO Y, PENG Y. FinePOSE: Fine-grained prompt-driven 3D human pose estimation via diffusion models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2024. New York: IEEE, 2024: 789–799.
|