[1]李昌财,陈刚,侯作勋,等.自动驾驶中的三维目标检测算法研究综述[J].中国图象图形学报,2024,29(11):3238-3264.
LI Changcai, CHEN Gang, HOU Zuoxun, et al. A review of research on three-dimensional target detection algorithms in autonomous driving[J]. Chinese Journal of Image Graphics,2024,29(11):3238-3264.
[2]Zhang B, Wang H, You S, et al. A small-size 3D object detection network for analyzing the sparsity of raw LiDAR point cloud[J]. Journal of Russian Laser Research, 2023, 44(6): 646-655.
[3]Wang J, Liu Y, Zhu Y, et al. 3d point cloud object detection method based on multi-scale dynamic sparse voxelization[J]. Sensors, 2024, 24(6): 1804.
[4]Yang H, Wang W, Chen M, et al. Pvt-ssd: Single-stage 3d object detector with point-voxel transformer[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 13476-13487.
[5]龙丽叶,焦世超,郭磊,等.基于紧凑中心的多模态三维模型检索研究[J].计算机工程,2025,51(02):322-334.
Li-Yeh Long, Shi-Chao Jiao, Lei Guo, et al. Research on multimodal 3D model retrieval based on compact center[J]. Computer Engineering,2025,51(02):322-334.
[6]Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660.
[7]Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in neural information processing systems, 2017, 30.
[8]Shi S, Wang X, Li H. Pointrcnn: 3d object proposal generation and detection from point cloud[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 770-779.
[9]Zhou Y, Tuzel O. Voxelnet: End-to-end learning for point cloud based 3d object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4490-4499.
[10]Lang A H, Vora S, Caesar H, et al. Pointpillars: Fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 12697-12705.
[11]Yan Y, Mao Y, Li B. Second: Sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
[12]Deng J, Shi S, Li P, et al. Voxel r-cnn: Towards high performance voxel-based 3d object detection[C]//Proceedings of the AAAI conference on artificial intelligence. 2021, 35(2): 1201-1209.
[13]Yin T, Zhou X, Krahenbuhl P. Center-based 3d object detection and tracking[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 11784-11793.
[14]孙一杰,李晓明.结合动态循环金字塔与任务解耦的无锚框检测[J].计算机工程与设计,2025,46(04):1157-1166.
Sun Yijie,Li Xiaoming. Combining dynamic cyclic pyramid with task decoupling for anchor-free frame detection[J]. Computer Engineering and Design,2025,46(04):1157-1166.
[15]Law H, Deng J. Cornernet: Detecting objects as paired keypoints[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 734-750.
[16]Zhou X, Zhuo J, Krahenbuhl P. Bottom-up object detection by grouping extreme and center points[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 850-859.
[17]Zhou X, Wang D, Krähenbühl P. Objects as points[J]. arXiv preprint arXiv:1904.07850, 2019.
[18]Tian Z, Shen C, Chen H, et al. Fcos: Fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 9627-9636.
[19]Caesar H, Bankiti V, Lang A H, et al. nuscenes: A multimodal dataset for autonomous driving[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11621-11631.
[20]Loshchilov I, Hutter F. Decoupled weight decay regularization[J]. arXiv preprint arXiv:1711.05101, 2017.
[21]Hu P, Ziglar J, Held D, et al. What you see is what you get: Exploiting visibility for 3d object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11001-11009.
[22]Chen Q, Sun L, Cheung E, et al. Every view counts: Cross-view consistency in 3d object detection with hybrid-cylindrical-spherical voxelization[J]. Advances in Neural Information Processing Systems, 2020, 33: 21224-21235.
[23]Vora S, Lang A H, Helou B, et al. Pointpainting: Sequential fusion for 3d object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 4604-4612.
[24]Yin J, Shen J, Guan C, et al. Lidar-based online 3d video object detection with graph-based message passing and spatiotemporal transformer attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11495-11504.
[25]Zhu X, Ma Y, Wang T, et al. Ssn: Shape signature networks for multi-class object detection from point clouds[C]//European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 581-597.
[26]Zhu B, Jiang Z, Zhou X, et al. Class-balanced grouping and sampling for point cloud 3d object detection[J]. arXiv preprint arXiv:1908.09492, 2019.
[27]Li J, Luo C, Yang X. PillarNeXt: Rethinking network designs for 3D object detection in LiDAR point clouds[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 17567-17576.
[28]Chen Y, Liu J, Zhang X, et al. Voxelnext: Fully sparse voxelnet for 3d object detection and tracking[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 21674-21683.
[29]Mei C, He H, Liu Y, et al. SEGT: A General Spatial Expansion Group Transformer for nuScenes Lidar-based Object Detection Task[J]. arXiv preprint arXiv:2412.09658, 2024.
[30]Fan L, Wang F, Wang N, et al. Fsd v2: Improving fully sparse 3d object detection with virtual voxels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
[31]Chen Y, Li Y, Zhang X, et al. Focal sparse convolutional networks for 3d object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 5428-5437.
[32]Chen Y, Liu J, Zhang X, et al. Largekernel3d: Scaling up kernels in 3d sparse cnns[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 13488-13498.
|