[1] 陈海永,赵鹏,闫皓炜.融合注意力的多尺度Faster RCNN的裂纹检测[J].光电工程,2021,48(1):200112.
CHEN H Y, ZHAO P, YAN H W. Crack detection based on multi-scale faster RCNN with attention[J]. Opto-Electron Eng, 2021, 48(1): 200112.(in Chinese)
[2] Tabernik D,Šela S,Skvarč J, et al.Segmentation-based deep learning approach for surface-defect detection.Journal of Intelligent Manufacturing,2020,31(3):759-776.
[3] JIAO LC,ZHANG F,LIU F,et al. A survey of deep learning based object detection.IEEE Access,2019,7:128837-128868.
[4] PADILLA R, NETTO SL, SILVA D EAB. A survey on performance metrics for object-detection algorithms. Proceedings of the 2020 International Conference on ystems, Signalsand Image Processing (IWSSIP). Niteroi: IEEE,2020.237-242.
[5] LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles [J]. arXiv preprint arXiv:2206.02424, 2022.
[6] XIAO YZ, TIAN ZQ,YU JC, et al. A review of object detection based on deep learning. Multimedia Tools and Applications, 2020, 79(33-34):23729-23791.
[7] 唐东林,杨洲,程衡,等.浅层卷积神经网络融合Transformer的金属缺陷图像识别方法[J].中国机械工程,2022,33(19):2298-2305+2316.
Tang D L, Yang Z, Cheng H, et al. Metal Defect Image Recognition Method Based on Shallow CNN Fusion Transformer[J].China Mechanical Engineering,2022,33(19):2298-2305+2316. (in Chinese)
[8] 孙博言,王洪元,刘乾等.基于多尺度和注意力机制的混合监督金属表面缺陷检测[J].智能系统学报,2023,18(4):886-893.
Sun B Y, Wang H Y, Liu Q, et al. Hubrid supervised metal surface defect detection based on multi-scale and attention[J]. CAAI Transaction on Intelligent Systems, 2023,18(4):886-893. (in Chinese)
[9] SHEN X, XING Y, LU J, et al. Detection of surface defecton flexible printed circuit via guided box improvement in GA-Faster-RCNN network[J]. PLoS One, 2023, 18(12): e0295400.
[10] KANG L, GE Y, HUANG H, et al. Research on PCB defect detection based on SSD[C]//Proceedings of the IEEE 4thInternational Conference on Civil Aviation Safety and Information Technology. Piscataway: IEEE Press, 2022: 1315-1319.
[11] LI J B, LI C C, FENG S P, et al.Wheat ear recognition based on RetinaNet and transfer learning[J]. Sensors, 2021, 21(14): 4845-4845.
[12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedin gs of the IEEE conference on computer vision and patter n recognition. 2016: 779-788.
[13] Zhou Y, Zhao Z. MPA-YOLO: Steel Surface Defect Detection Based on Improved YOLOv8 Framework[J]. Pattern Recognition, 2025: 111897.
[14] Wei Zhang,Gate-guided spatial-channel reconstruction network: An efficient lightweight framework for steel surface defect detection,Engineering Applications of Artificial Intelligence,Volume 162, Part C,2025,112537,ISSN 0952-1976,https://doi.org/10.1016/j.engappai.2025.112537.
[15] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C].// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 7263-7271.
[16] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real- time object detectors[C].// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 7464-7475.
[17] JOCHER G. Ultralytics[EB/OL]. (2024-7-25) [2024-7-25]. https://github.com/ultralytics/ultralytics.
[18] 张亚腾,黄俊.基于YOLOv7的钢表面缺陷检测[J].激光杂志,2024,45(03):87.
ZHANG Y T, HUANG J. teel surface defect detection based on YOLOv7[J]. Laser Journal, 2024,45(3): 87.(in Chinese)
[19] 胡凯涛,马向华,孙向宇等.融合Res2Net和部分卷积的带钢表面缺陷检测算法[J].计算机工程与应用,2025,61(05):334-343
Hu K T, Ma X H, Sun X Y, et al.Steel Strip Surface Defect Detection Algorithm Integrating Res2Net and Partial Convolution [J]. Computer Engineering and Applications,2025,61(05):334-343(in Chinese)
[20] 王春梅,刘欢.YOLOv8-VSC:一种轻量级的带钢表面缺陷检测算法[J].计算机科学与探索,2024,18(01):151-160.
WANG C M, LIU H. YOLOv8-VSC: A lightweight algorithmfor detecting surface defects of strip steel [J]. Journal of Frontiers of Computer Science and Technology.(in
Chinese)
[21] LI D, LIi L, CHEN Z, et al. Shift-ConvNets: Small convolutional kernel with large kernel effects[J]. arxiv preprint arxiv:2401.12736, 2024.
[22] ZHANG J, LI X, LIi J, et al. Rethinking mobile block for efficient attention based models[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE Computer Society, 2023: 1389-1400.
[23] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in cnn[J]. Expert Systems with Applications, 2024, 236: 121352.
[24] GUO M H, LU C Z,LIU Z N, et al.Visual attention network[J]. Computational visual media, 2023,9(4): 733-752.
[25] LIU W, LU H, FU H, et al.Learning to upsample by learning to sample[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023:6027-6037.
[26] Shi W , Caballero J ,Ferenc Huszár,et al.Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[J].IEEE, 2016.DOI:10.1109/CVPR.2016.207.
[27] Morales-Brotons D ,Vogels T ,Hendrikx H Exponential moving average of weights in deep learning:Dynamics and benefits[J]. arxiv preprint arxiv:2411.18704, 2024.
[28] YU ZP, HUANG HB, CHEN WJ, et al. YOLO-FaceV2: A scale and occlusion aware face detector. arXiv:2208.02019, 2022.
[29] HE Y, SONG K C, MENG Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features [J]. IEEE Transactions on Instrumentationand Measurement, 2019, 69(4):1493-1504.
[30] 赵小虎,谢礼逊,慕灯聪,等.基于TCM-YOLO网络的金属表面缺陷检测方法[J].计算机工程,2025,51(06):338-348.DOI:10.19678/j.issn.1000-3428.0069285.
Zhao X H, Xie L X, Mu D C. et al. Metal surface defect detection based on TCM - YOLO network method [J]. Computer engineering, 2025 ploidy (6) : 338-348. The DOI: 10.19678 / j.i SSN. 1000-3428.0069285.(in Chinese)
[31] Liao L, Song C, Wu S, Fu J. A Novel YOLOv10-Based Algorithm for Accurate Steel Surface Defect Detection.Sensors.2025;25(3):769.https://doi.org/10.3390/s25030769
[32] Tian Y, Ye Q, Doermann D. Yolov12: Attention-centric real-time object detectors[J]. arxiv preprint arxiv:2502.12524, 2025.
|