[1] Li Y, Wang R, Liu Y, et al. Satellite range scheduling with the priority constraint: An improved genetic algorithm using a station ID encoding method[J]. Chinese Journal of Aeronautics, 2015, 28(3): 789-803.
[2] 刘洋,贺仁杰,谭跃进.基于约束满足的多卫星调度模型研究[J].系统工程与电子技术,2004,(08):1076-1079.
Liu Yang, He Renjie, Tan Yuejin. Research on multi-satellite scheduling model based on constraint satisfaction[J]. Systems Engineering and Electronics, 2004, (08): 1076-1079.
[3] 杜永浩,邢立宁,陈盈果,等.卫星任务调度统一化建模与多策略协同求解方法[J].控制与决策,2019,34(09):1847-1856.DOI:10.13195/j.kzyjc.2019.0111.
Du Yonghao, Xing Lining, Chen Yingguo, et al. Unified modeling and multi-strategy collaborative solution method for satellite mission scheduling[J]. Control and Decision, 2019, 34(09): 1847-1856. DOI: 10.13195/j.kzyjc.2019.0111.
[4] 王远振,赵坚,聂成.多卫星—地面站系统的Petri网模型研究[J].空军工程大学学报(自然科学版),2003,(02):7-11.
Wang Yuanzhen, Zhao Jian, Nie Cheng. Research on Petri net model of multi-satellite-ground station system[J]. Journal of Air Force Engineering University (Natural Science Edition), 2003, (02): 7-11.
[5] Zufferey N, Amstutz P, Giaccari P. Graph colouring approaches for a satellite range scheduling problem[J]. Journal of Scheduling, 2008, 11: 263-277.
[6] Tang Y, Wang Y, Chen J, et al. Uplink scheduling of navigation constellation based on genetic algorithm[C]//2016 IEEE 13th International Conference on Signal Processing (ICSP). IEEE, 2016: 1124-1129.
[7] Kilic S, Ozkan O. Ant colony optimization approach for satellite broadcast scheduling problem[C]//2017 8th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2017: 273-277.
[8] 常飞,武小悦.卫星数传调度问题的速度可控粒子群优化算法[J].宇航学报,2010,31(08):2015-2022.
Chang Fei, Wu Xiaoyue. Velocity-controllable particle swarm optimization algorithm for satellite data transmission scheduling problem[J]. Journal of Astronautics, 2010, 31(08): 2015-2022.
[9] Xia K, Zheng F, Chi Y, et al. Study on satellite broadcasting scheduling based on particle swarm optimization algorithm[C]//2009 IEEE international conference on communications technology and applications. IEEE, 2009: 962-966.
[10] Funabiki N, Nishikawa S. A binary Hopfield neural-network approach for satellite broadcast scheduling problems[J]. IEEE transactions on neural networks, 1997, 8(2): 441-445.
[11] 李长德,徐伟,徐梁,等.基于深度神经网络的多星测控调度方法[J].中国空间科学技术,2022,42(01):65-72.DOI:10.16708/j.cnki.1000-758X.2022.0007.
Li Changde, Xu Wei, Xu Liang, et al. Multi-satellite TT&C scheduling method based on deep neural network[J]. Chinese Space Science and Technology, 2022, 42(01): 65-72. DOI: 10.16708/j.cnki.1000-758X.2022.0007.
[12] Ren B, Zhu Z, Yang F, et al. High-altitude satellites range scheduling for urgent request utilizing reinforcement learning[J]. Open Astronomy, 2022, 31(1): 268-275.
[13] Wang X, Wu J, Shi Z, et al. Deep reinforcement learning-based autonomous mission planning method for high and low orbit multiple agile Earth observing satellites[J]. Advances in Space Research, 2022, 70(11): 3478-3493.
[14] Li S, Yu Q, Ding H. Reviews and prospects in satellite range scheduling problem[J]. Autonomous Intelligent Systems, 2023, 3(1): 9.
[15] 李宛静, 李加洪, 张晨, 等. 基于数据和知识驱动的低轨卫星资源智能调度研究综述[J]. 空间电子技术, 2023, 20(6): 42-51.
Li Wanjing, Li Jiahong, Zhang Chen, et al. Review of intelligent scheduling research for low-orbit satellite resources based on data and knowledge driven[J]. Space Electronic Technology, 2023, 20(6): 42-51.
[16] 谷学强,张万鹏,谭思雨,等.面向低轨星座边缘计算的博弈强化学习方法综述[J].智能科学与技术学报, 2024, 6(3):301-318.
Gu Xueqiang, Zhang Wanpeng, Tan Siyu, et al. A review of game reinforcement learning methods for edge computing in low-earth orbit constellations[J]. Journal of Intelligent Science and Technology, 2024, 6(3): 301-318.
[17] 张淅,郑重,王英杰,等.面向巨型星座网络的多星多波束协作传输方法[J].移动通信,2023,47(07):42-48.
Zhang Xi, Zheng Zhong, Wang Yingjie, et al. A Multi-Satellite and Multi-Beam Cooperative Transmission Method for Mega-Constellation Networks[J]. Mobile Communications, 2023, 47(07): 42-48.
[18] Wang P, Reinelt G. Solving the earth observing satellite constellation scheduling problem by branch-and-price[C]//Operations Research Proceedings 2010: Selected Papers of the Annual International Conference of the German Operations Research Society. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 491-496.
[19] Rigo C A, Seman L O, Camponogara E, et al. A branch-and-price algorithm for nanosatellite task scheduling to improve mission quality-of-service[J]. European Journal of Operational Research, 2022, 303(1): 168-183.
[20] Marinelli F, Nocella S, Rossi F, et al. A Lagrangian heuristic for satellite range scheduling with resource constraints[J]. Computers & Operations Research, 2011, 38(11): 1572-1583.
[21] Wei K, Tang Q, Guo J, et al. Resource scheduling and offloading strategy based on LEO satellite edge computing[C]//2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). IEEE, 2021: 1-6.
[22] Ma T, Qian B, Qin X, et al. Resource scheduling for high-capacity multicast service in ultra-dense LEO satellite networks[J]. IEEE Transactions on Vehicular Technology, 2023, 73(2): 2468-2481.
[23] Zhang Z, Hu F, Zhang N. Ant colony algorithm for satellite control resource scheduling problem[J]. Applied Intelligence, 2018, 48: 3295-3305.
[24] Fu S, Gao J, Zhao L. Collaborative multi-resource allocation in terrestrial-satellite network towards 6G[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7057-7071.
[25] Sarkheyli A, Bagheri A, Ghorbani-Vaghei B, et al. Using an effective tabu search in interactive resources scheduling problem for LEO satellites missions[J]. Aerospace Science and Technology, 2013, 29(1): 287-295.
[26] 龚虹瑞,陈露,高越,等.基于效能评估的卫星资源调度方法[J].计算机测量与控制,2024,32(10):313-318.DOI:10.16526/j.cnki.11-4762/tp.2024.10.044.
Gong Hongrui, Chen Lu, Gao Yue, et al. Satellite resource scheduling method based on effectiveness evaluation[J].Computer Measurement & Control, 2024, 32(10): 313-318. DOI: 10.16526/j.cnki.11-4762/tp.2024.10.044.
[27] 严宏,童建飞,曾飘,等.面向低轨卫星通信的异质终端协同资源调度方法[J].移动通信,2023,47(10):65-70.
Yan Hong, Tong Jianfei, Zeng Piao, et al. Heterogeneous terminal collaborative resource scheduling method for low-orbit satellite communication[J]. Mobile Communications, 2023, 47(10): 65-70.
[28] Fan H, Yang Z, Wu S, et al. An efficient satellite resource cooperative scheduling method on spatial information networks[J]. Mathematics, 2021, 9(24): 3293.
[29] 李鹏,孙凯,方华.一种无中心TDMA卫星通信系统资源动态调度算法[J].现代电子技术,2021,44(17):25-30.DOI:10.16652/j.issn.1004-373x.2021.17.006.
Li Peng, Sun Kai, Fang Hua. A dynamic resource scheduling algorithm for centerless TDMA satellite communication systems[J]. Modern Electronics Technique, 2021, 44(17): 25-30. DOI: 10.16652/j.issn.1004-373x.2021.17.006.
[30] 贺川,孟宪贵,祝转民,等.基于执行时段滑动调整策略的中继卫星任务规划算法设计[J].飞行器测控学报,2015,34(03):246-253.
He Chuan, Meng Xiangui, Zhu Zhuanmin, et al. Design of relay satellite mission planning algorithm based on execution time window sliding adjustment strategy[J]. Journal of Spacecraft TT&C Technology, 2015, 34(03): 246-253.
[31] 李宗凌,龙腾,赵保军,等.面向预警场景的大规模星座协同调度标准建模与求解方法[J].航空学报,2024,45(22):208-224.
Li Zongling, Long Teng, Zhao Baojun, et al. Standard modeling and solving method for large-scale constellation collaborative scheduling for early warning scenarios[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 208-224.
[32] Burrowbridge S E. Optimal allocation of satellite network resources[D]. Virginia Tech, 1999.
[33] 张红旗.基于贪婪算法的卫星地面站资源调度方法[J].无线电工程,2010,40(12):4-6+30.
Zhang Hongqi. Satellite ground station resource scheduling method based on greedy algorithm[J]. Radio Engineering, 2010, 40(12): 4-6+30.
[34] Liang Z, Liu L, Jiang J W, et al. Data relay system data download scheduling algorithm for earth observation satellites[C]//2017 IEEE International Conference on Communication, Networks and Satellite (Comnetsat). IEEE, 2017: 14-20.
[35] Yang W, Chen Y, He L, et al. A two-layer tabu search-based distributed satellite online collaboration method for batch arrival emergency tasks[C]//Eighth Asia Pacific Conference on Optics Manufacture and Third International Forum of Young Scientists on Advanced Optical Manufacturing (APCOM and YSAOM 2023). SPIE, 2023, 12976: 160-167.
[36] Wang T, Gu Y, Wang H, et al. Adaptive variable neighborhood search algorithm with Metropolis rule and tabu list for satellite range scheduling problem[J]. Computers & Operations Research, 2024, 170: 106757.
[37] 刘海蛟,秦鹏,王妮炜,等.低轨星座体系结构设计及资源调度算法研究[J].中国电子科学研究院学报,2018,13(06):631-635.
Liu Haijiao, Qin Peng, Wang Niwei, et al. Research on low-orbit constellation architecture design and resource scheduling algorithm[J]. Journal of China Academy of Electronics and Information Technology, 2018, 13(06): 631-635.
[38] 党彩虹,聂敏.基于免疫和模拟退火混合算法的量子卫星资源调度策略[J].激光与光电子学进展,2024,61(21):404-411.
Dang Caihong, Nie Min. Quantum satellite resource scheduling strategy based on hybrid algorithm of immunity and simulated annealing[J]. Laser & Optoelectronics Progress, 2024, 61(21): 404-411.
[39] Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[C]//Proceedings of the first European conference on artificial life. 1991, 142: 134-142.
[40] Dorigo M. Optimization, learning and natural algorithms[J]. Ph. D. Thesis, Politecnico di Milano, 1992.
[41] Zhang Z, Zhang N, Feng Z. Multi-satellite control resource scheduling based on ant colony optimization[J]. Expert Systems with Applications, 2014, 41(6): 2816-2823.
[42] Zhang N, Feng Z, Ke L. Guidance-solution based ant colony optimization for satellite control resource scheduling problem[J]. Applied Intelligence, 2011, 35: 436-444.
[43] Zhang Z, Hu F, Zhang N. Ant colony algorithm for satellite control resource scheduling problem[J]. Applied Intelligence, 2018, 48: 3295-3305.
[44] 何元智,彭聪,于季弘,等.面向密集多波束组网的卫星通信系统资源调度算法[J].通信学报,2021,42(04):109-118.
He Yuanzhi, Peng Cong, Yu Jihong, et al. Resource scheduling algorithm for satellite communication system oriented to dense multi-beam networking[J]. Journal on Communications, 2021, 42(04): 109-118.
[45] 刘文文,熊伟,韩驰.基于改进超启发算法的通信卫星任务松弛调度方法[J].计算机科学,2022,49(S2):887-892.
Liu Wenwen, Xiong Wei, Han Chi. Relaxation scheduling method for communication satellite tasks based on improved hyper-heuristic algorithm[J]. Computer Science, 2022, 49(S2): 887-892.
[46] 刘文文,熊伟,韩驰,等.静止轨道通信卫星资源调度模型与算法研究[J].无线电工程,2022,52(07):1172-1179.
Liu Wenwen, Xiong Wei, Han Chi, et al. Research on resource scheduling model and algorithm for geostationary orbit communication satellites[J]. Radio Engineering, 2022, 52(07): 1172-1179.
[47] 吉用华,张晨,张更新.面向高吞吐量的NB-IoT低轨卫星物联网资源调度[J].太赫兹科学与电子信息学报,2024,22(09):933-943+951.
Ji Yonghua, Zhang Chen, Zhang Gengxin. NB-IoT low-orbit satellite IoT resource scheduling for high throughput[J]. Journal of Terahertz Science and Electronic Information Technology, 2024, 22(09): 933-943+951.
[48] 樊慧晶,章文毅,田妙苗,等.基于粒子群算法的卫星任务地面站资源调度方法[J].中国科学院大学学报,2022,39(06):801-808.
Fan Huijing, Zhang Wenyi, Tian Miaomiao, et al. Satellite mission ground station resource scheduling method based on particle swarm optimization algorithm[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(06): 801-808.
[49] Chen H, Li J, Jing N, et al. Hybrid algorithms for electromagnetic detection satellites scheduling[C]//2008 20th IEEE International Conference on Tools with Artificial Intelligence. IEEE, 2008, 1: 411-418.
[50] He Q, Tian Y, Li D, et al. Satellite imaging task planning using particle swarm optimization and Tabu Search[C]//2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, 2021: 589-595.
[51] 李婷,贾鹏德,杨宇,等.面向卫星常规测控任务的地面站资源调度[J].系统仿真技术,2024,20(01):65-72.DOI:10.16812/j.cnki.cn31-1945.2024.01.006.
Li Ting, Jia Pengde, Yang Yu, et al. Ground station resource scheduling for satellite routine TT&C tasks[J]. System Simulation Technology, 2024, 20(01): 65-72. DOI: 10.16812/j.cnki.cn31-1945.2024.01.006.
[52] Xhafa F, Sun J, Barolli A, et al. Genetic algorithms for satellite scheduling problems[J]. Mobile Information Systems, 2012, 8(4): 351-377.
[53] Zhao W, Zhao J, Zhao S, et al. Resources scheduling for data relay satellite with microwave and optical hybrid links based on improved niche genetic algorithm[J]. Optik, 2014, 125(13): 3370-3375.
[54] Deng B, Jiang C, Kuang L, et al. Two-phase task scheduling in data relay satellite systems[J]. IEEE Transactions on Vehicular Technology, 2017, 67(2): 1782-1793.
[55] 刘文文,熊伟,韩驰.基于改进NSGA-Ⅱ的通信卫星资源动态调度方法[J].兵工自动化,2022,41(04):69-75.
Liu Wenwen, Xiong Wei, Han Chi. Dynamic scheduling method for communication satellite resources based on improved NSGA-Ⅱ[J]. Ordnance Industry Automation, 2022, 41(04): 69-75.
[56] Chen L, Zheng Y. Satellite Communication System Resource Scheduling Algorithm Based on Artificial Intelligence[J]. Procedia Computer Science, 2023, 228: 551-558.
[57] 段超凡,王锐.基于智能水滴算法的卫星信道资源调度研究[J].现代计算机,2022,28(07):75-78+86.
Duan Chaofan, Wang Rui. Research on satellite channel resource scheduling based on intelligent water drop algorithm[J]. Modern Computer, 2022, 28(07): 75-78+86.
[58] Yao X, Pan X, Zhang T, et al. Knowledge-guided evolutionary algorithm for multi-satellite resource scheduling optimization[J]. Future Generation Computer Systems, 2024, 156: 130-141.
[59] Xiong J, Leus R, Yang Z, et al. Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project[J]. European Journal of Operational Research, 2016, 251(2): 662-675.
[60] Chen H, Zhong Z, Wu J, et al. Multi-satellite data downlink resource scheduling algorithm for incremental observation tasks based on evolutionary computation[C]//2015 Seventh International Conference on Advanced Computational Intelligence (ICACI). IEEE, 2015: 251-256.
[61] 何敏藩,朱燕麒,贾学卿.考虑多滑动窗口的中继卫星调度模型及启发式算法[J].郑州大学学报,2018,39(05):11-21.DOI:10.13705/j.issn.1671-6833.2018.05.020.
He Minfan, Zhu Yanqi, Jia Xueqing. Relay satellite scheduling model and heuristic algorithm considering multiple sliding windows[J]. Journal of Zhengzhou University, 2018, 39(05): 11-21. DOI: 10.13705/j.issn.1671-6833.2018.05.020.
[62] Wu G, Luo Q, Zhu Y, et al. Flexible task scheduling in data relay satellite networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 58(2): 1055-1068.
[63] Spangelo S, Cutler J, Gilson K, et al. Optimization-based scheduling for the single-satellite, multi-ground station communication problem[J]. Computers & Operations Research, 2015, 57: 1-16.
[64] Xie P, Wang H, Chen Y, et al. A heuristic algorithm based on temporal conflict network for agile Earth observing satellite scheduling problem[J]. IEEE Access, 2019, 7: 61024-61033.v
[65] Tang Z, Zhou H, Ma T, et al. Leveraging LEO assisted cloud-edge collaboration for energy efficient computation offloading[C]//2021 IEEE Global Communications Conference (GLOBECOM). IEEE, 2021: 1-6.
[66] Meng H, Li C, Lu W, et al. Multi-satellite resource scheduling based on deep neural network[C]//2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019: 1-7.
[67] Wenjun S, Guangbin M, Miaomiao T, et al. Remote sensing satellite ground station antenna intelligent scheduling with LSTM and heuristic search[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(4): 532.
[68] Song Y J, Song B Y, Zhang Z S, et al. The satellite downlink replanning problem: a BP neural network and hybrid algorithm approach for IoT internet connection[J]. IEEE Access, 2018, 6: 39797-39806.
[69] Xu F, Yang F, Zhao C, et al. Deep reinforcement learning based joint edge resource management in maritime network[J]. China Communications, 2020, 17(5): 211-222.
[70] Qiu C, Yao H, Yu F R, et al. Deep Q-learning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5871-5883.
[71] Gu Z, She C, Hardjawana W, et al. Knowledge-assisted deep reinforcement learning in 5G scheduler design: From theoretical framework to implementation[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(7): 2014-2028.
[72] Zhou D, Sheng M, Wang Y, et al. Machine learning-based resource allocation in satellite networks supporting internet of remote things[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6606-6621.
[73] 周碧莹,王爱平,费长江,等.基于强化学习的卫星网络资源调度机制[J].计算机工程与科学,2019,41(12):2134-2142.
Zhou Biying, Wang Aiping, Fei Changjiang, et al. Satellite network resource scheduling mechanism based on reinforcement learning[J]. Computer Engineering & Science, 2019, 41(12): 2134-2142.
[74] Long Y, Shan C, Shang W, et al. Deep reinforcement learning-based approach with varying-scale generalization for the earth observation satellite scheduling problem considering resource consumptions and supplements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(3): 2572-2585.
[75] Yin Y, Huang C, Wu D F, et al. Deep reinforcement learning‐based joint satellite scheduling and resource allocation in satellite‐terrestrial integrated networks[J]. Wireless Communications and Mobile Computing, 2022, 2022(1): 1177544.
[76] Zhou D, Sheng M, Bao C, et al. Mission-Driven Resource Scheduling in Satellite-Terrestrial Networks: From Perspective of Collaboration and Reconfiguration[J]. IEEE Transactions on Communications, 2025.
[77] Cheng N, Lyu F, Quan W, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117-1129.
[78] Cui G, Li X, Xu L, et al. Latency and energy optimization for MEC enhanced SAT-IoT networks[J]. IEEE Access, 2020, 8: 55915-55926.
[79] Li J, Chai R, Gui K, et al. Joint Task Offloading and Resource Scheduling in Low Earth Orbit Satellite Edge Computing Networks[J]. Electronics, 2025, 14(5): 1016.
[80] 张沛,刘帅军,马治国,等.基于深度增强学习和多目标优化改进的卫星资源分配算法[J].通信学报,2020,41(06):51-60.
Zhang Pei, Liu Shuaijun, Ma Zhiguo, et al. Satellite resource allocation algorithm improved based on deep reinforcement learning and multi-objective optimization[J]. Journal on Communications, 2020, 41(06): 51-60.
[81] Herrmann A, Schaub H. Reinforcement learning for the agile earth-observing satellite scheduling problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 5235-5247.
[82] Ou J, Xing L, Yao F, et al. Deep reinforcement learning method for satellite range scheduling problem[J]. Swarm and Evolutionary Computation, 2023, 77: 101233.
[83] Li Y, Guo X, Meng Z, et al. A hierarchical resource scheduling method for satellite control system based on deep reinforcement learning[J]. Electronics, 2023, 12(19): 3991.
[84] Huang T, Fang Z, Tang Q, et al. Dual-Timescales Optimization of Task Scheduling and Resource Slicing in Satellite-Terrestrial Edge Computing Networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(12):14111-14126.
[85] Cui K, Song J, Zhang L, et al. Event-triggered deep reinforcement learning for dynamic task scheduling in multisatellite resource allocation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 59(4): 3766-3777.
[86] Bao C, Sheng M, Zhou D, et al. Toward Intelligent Cross-Domain Resource Coordinate Scheduling for Satellite Networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9610-9625.
[87] 陈前斌,管令进,李子煜,等.基于深度强化学习的异构云无线接入网自适应无线资源分配算法[J].电子与信息学报,2020,42(06):1468-1477.
Chen Qianbin, Guan Lingjin, Li Ziyu, et al. Adaptive radio resource allocation algorithm for heterogeneous cloud radio access networks based on deep reinforcement learning[J]. Journal of Electronics & Information Technology, 2020, 42(06): 1468-1477.
[88] 陈前斌,麻世庆,段瑞吉,等.基于迁移深度强化学习的低轨卫星跳波束资源分配方案[J].电子与信息学报,2023,45(02):407-417.
Chen Qianbin, Ma Shiqing, Duan Ruiji, et al. Low-orbit satellite spot-beam hopping resource allocation scheme based on transfer deep reinforcement learning[J]. Journal of Electronics & Information Technology, 2023, 45(02): 407-417.
[89] 王尧,罗俊仁,周棪忠,等.面向策略探索的强化学习与进化计算方法综述[J].计算机科学,2024,51(03):183-197.
Wang Yao, Luo Junren, Zhou Yanzong, et al. Survey on reinforcement learning and evolutionary computation methods for policy exploration[J]. Computer Science, 2024, 51(03): 183-197.
[90] Niu L, Chen X, Zhang N, et al. Multiagent meta-reinforcement learning for optimized task scheduling in heterogeneous edge computing systems[J]. IEEE Internet of Things Journal, 2023, 10(12): 10519-10531.
[91] Lin Z, Ni Z, Kuang L, et al. Dynamic beam pattern and bandwidth allocation based on multi-agent deep reinforcement learning for beam hopping satellite systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 3917-3930.
[92] Bao C, Zhou D, Sheng M, et al. Resource scheduling in satellite networks: A sparse representation based machine learning approach[C]//2021 IEEE Global Communications Conference (GLOBECOM). IEEE, 2021: 01-06.
[93] Jiang Q, Zheng L, Zhou Y, et al. Efficient On-Orbit Remote Sensing Imagery Processing via Satellite Edge Computing Resource Scheduling Optimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025.
[94] Fu S, Gao J, Zhao L. Integrated resource management for terrestrial-satellite systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3256-3266.
[95] 靳鹏,李康.基于改进合同网协议的分布式卫星资源调度[J].系统工程与电子技术,2022,44(10):3164-3173.
Jin Peng, Li Kang. Distributed satellite resource scheduling based on improved contract net protocol[J]. Systems Engineering and Electronics, 2022, 44(10): 3164-3173.
|