[1] LEIJEN S, van GEEL R M, SONKE G S, et al. Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months[J]. Journal of Clinical Oncology, 2016, 34(36): 4354-4361.
[2] 刘闯,舒胜利,詹秀秀,等.基于复杂网络的合成致死预测方法研究综述[J].计算机学报,2023,46(08):1670-1692.
Liu, C., Shu, S., Zhan, X., et al. (2023). A survey on synthetic lethality prediction methods based on complex networks. Chinese Journal of Computers, 46(8), 1670-1692.
[3] WANG S, XU F, LI Y, et al. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers[J]. Bioinformatics, 2021, 37
[4] Zhang K, Wu M, Liu Y, et al. KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality[J]. Bioinformatics, 2023, 39(Supplement_1): i158-i167.
[5] ZHU Y, ZHOU Y, LIU Y, et al. SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network[J]. Bioinformatics, 2023, 39(2): btad015.
[6] HELLEDAY T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings[J]. Molecular oncology, 2011, 5(4): 387-393.
[7] CHEN X, CAI R, HUANG Z, et al. Interpretable high-order knowledge graph neural network for predicting synthetic lethality in human cancers[J]. Briefings in Bioinformatics, 2025, 26(2): bbaf142.
[8] GARNELO M, SCHWARZ J, ROSENBAUM D, et al. Neural processes[J]. arXiv preprint arXiv:1807.01622, 2018.
[9] Van den OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv preprint arXiv:1807.03748, 2018.
[10] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans[J]. Advances in neural information processing systems, 2017, 30.
[11] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//kdd: vol. 96: 34. 1996: 226-231.
[12] WANG J, ZHANG Q, HAN J, et al. Computational methods, databases and tools for synthetic lethality prediction[J]. Briefings in Bioinformatics, 2022, 23(3): bbac106.
[13] SINHA S, THOMAS D, CHAN S, et al. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data[J]. Nature communications, 2017, 8(1): 15580.
[14] YANG C, GUO Y, QIAN R, et al. Mapping the landscape of synthetic lethal interactions in liver cancer[J]. Theranostics, 2021, 11(18): 9038.
[15] LIANY H, JAYAGOPAL A, HUANG D, et al. Aster: A method to predict clinically relevant synthetic lethal genetic interactions[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(3): 1785-1796.v
[16] Liu Y, Wu M, Liu C, et al. SL 2 MF: Predicting synthetic lethality in human cancers via logistic matrix factorization[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2019, 17(3): 748-757.
[17] LIANY H, JEYASEKHARAN A, RAJAN V. Predicting synthetic lethal interactions using heterogeneous data sources[J]. Bioinformatics, 2019, 36(7): 2209-2216.
[18] HUANG J, WU M, LU F, et al. Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization[J]. BMC bioinformatics, 2019, 20(Suppl 19): 657.
[19] MEGCHELENBRINK W, KATZIR R, LU X, et al. Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival[J]. Proceedings of the National Academy of Sciences, 2015, 112(39): 12217-12222.
[20] KU A A, HU H M, ZHAO X, et al. Integration of multiple biological contexts reveals principles of synthetic lethality that affect reproducibility[J]. Nature communications, 2020, 11(1): 2375.
[21] BARRENA N, VALCÁRCEL L V, OLAVERRI-MENDIZABAL D, et al. Synthetic lethality in large-scale integrated metabolic and regulatory network models of human cells[J]. npj Systems Biology and Applications, 2023, 9(1): 32.
[22] PALADUGU S R, ZHAO S, RAY A, et al. Mining protein networks for synthetic genetic interactions[J]. Bmc Bioinformatics, 2008, 9: 1-14.
[23] LI J, LU L, ZHANG Y H, et al. Identification of synthetic lethality based on a functional network by using machine learning algorithms[J]. Journal of cellular biochemistry, 2019,120(1): 405-416.
[24] DOU Y, REN Y, ZHAO X, et al. CSSLdb: Discovery of cancer-specific synthetic lethal interactions based on machine learning and statistic inference[J]. Computers in Biology and Medicine, 2024, 170: 108066.
[25] CAI R, CHEN X, FANG Y, et al. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers[J]. Bioinform., 2020, 36(16): 4458-4465.
[26] 郝志峰,吴迪,蔡瑞初,等.基于有监督的多视角变分图自编码器的协同致死基因预测算法[J].计算机应用研究,2021,38(09):2678-2682.
Hao, Z., Wu, D., Cai, R., et al. (2021). Supervised multi-view variational graph auto-encoder for synthetic lethal gene prediction. Application Research of Computers, 38(9), 2678-2682.
[27] 朱晓敏,刘爽.基于KG-GCNASL方法的人类癌症合成致死预测研究[J].大连民族大学学报,2023,25(01):14-20.
Zhu, X., & Liu, S. (2023). Human cancer synthetic lethality prediction based on KG-GCNASL method. Journal of Dalian Minzu University, 25(1), 14-20.
[28] ZHANG G, CHEN Y, YAN C, et al. MPASL: multi-perspective learning knowledge graph attention network for synthetic lethality prediction in human cancer[J]. Frontiers in Pharmacology, 2024, 15: 1398231.
[29] LIU X, YU J, TAO S, et al. PiLSL: pairwise interaction learning-based graph neural network for synthetic lethality prediction in human cancers[J]. Bioinformatics, 2022, 38(Supplement_2): ii106-ii112.
[30] WANG S, FENG Y, LIU X, et al. NSF4SL: negative-sample-free contrastive learning for ranking synthetic lethal partner genes in human cancers[J]. Bioinformatics, 2022,38(Supplement_2): ii13-ii19.
[31] JHA S, GONG D, WANG X, et al. The neural process family: Survey, applications and perspectives[J]. arXiv preprint arXiv:2209.00517, 2022.
[32] LIANG H, GAO J. How neural processes improve graph link prediction (2022)[Z]. 2022.
[33] GARCÍA-ORTEGÓN M, SEAL S, RASMUSSEN C, et al. Graph neural processes for molecules: an evaluation on docking scores and strategies to improve generalization[J]. Journal of Cheminformatics, 2024, 16(1): 115.
[34] CANGEA C, DAY B, JAMASB A R, et al. Message passing neural processes[C]//ICLR 2022 Workshop on Geometrical and Topological Representation Learning. 2022.
[35] NASSAR M, WANG X, TUMER E. Conditional graph neural processes: A functional autoencoder approach[J]. arXiv preprint arXiv:1812.05212, 2018.
[36] ORTEGON M G, BENDER A, BACALLADO S. Conditional Neural Processes for Molecules[C]//Sixth Workshop on Meta-Learning at the Conference on Neural Information Processing Systems.
[37] ALLAM A, HORVATH A N, DITTBERNER M, et al. Predicting interstitial lung disease progression in patients with systemic sclerosis using attentive neural processes-a EUSTAR study[J]. medRxiv, 2024: 2024-04.
[38] KINGMA D P, WELLING M. Auto-Encoding Variational Bayes[C]//BENGIO Y, LECUN Y. 2nd International Conference on Learning Representations, ICLR 2014,
[39] HERSHEY J R, OLSEN P A. Approximating the Kullback Leibler divergence between Gaussian mixture models[C]//2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07: vol. 4. 2007: IV-317.
[40] CHEN T, KORNBLITH S, NOROUZI M, et al. A Simple Framework for Contrastive Learning of Visual Representations[C]//Proceedings of Machine Learning Research: Proceedings of the 37th International Conference on Machine Learning, ICML 2020,13-18 July 2020, Virtual Event: vol. 119. PMLR, 2020: 1597-1607.
[41] JANG E, GU S, POOLE B. Categorical Reparameterization with Gumbel-Softmax[C]//ICLR 2017.
[42] MADDISON C J, MNIH A, TEH Y W. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables[C/OL]// ICLR 2017.
[43] MIAO S, LIU M, LI P. Interpretable and generalizable graph learning via stochastic attention mechanism[C]//International conference on machine learning. PMLR, 2022: 15524-15543.
[44] FENG Y, LONG Y, WANG H, et al. Benchmarking machine learning methods for synthetic lethality prediction in cancer[J]. Nature Communications, 2024, 15: 9058.
[45] MOTHILAL R K, SHARMA A, TAN C. Explaining machine learning classifiers through diverse counterfactual explanations[C]//Proceedings of the 2020 conference on fairness, accountability, and transparency. 2020: 607-617.v
[46] LI Y, ZHOU J, VERMA S, et al. A Survey of Explainable Graph Neural Networks: Taxonomy and Evaluation Metrics[J]. CoRR, 2022, abs/2207.12599.
[47] YUAN H, YU H, et al. Explainability in Graph Neural Networks: A Taxonomic Survey[J/OL]. IEEE Trans. Pattern Anal. Mach. Intell., 2023, 45(5): 5782-5799.
[48] LAI M, CHEN G, YANG H, et al. Predicting synthetic lethality in human cancers via multi-graph ensemble neural network[C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021: 1731-1734.
[49] FAN K, GÖKBAĞ B, TANG S, et al. Synthetic lethal connectivity and graph transformer improve synthetic lethality prediction[J]. Briefings in Bioinformatics, 2024, 25(5): bbae425.
[50] ZHAO Y, SHI X, NING Q, et al. Ladgsl: A Link-Aware Attention Mechanism-Based Dual Graph Neural Network for Synthetic Lethality Prediction[J]. Available at SSRN 5294392. [Submitted to Chemometrics and Intelligent Laboratory Systems 2025].
[51] LIU Q, NING Q, LI H, et al. Mckg-Sl: Knowledge Graph-Based Multi-Feature Cross-Aggregation Synthetic Lethality Prediction for Kras Gene[J]. Available at SSRN 5366402 [Submitted to Artificial Intelligence in Medicine 2025].
[52] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
|