[1] LI B, YANG P, SUN Y, et al. 人工智能文本生成的进展与挑战[J]. Frontiers, 2024, 25(1): 64-83.
LI B, YANG P, SUN Y, et al. Progress and challenges of artificial intelligence text generation[J]. Frontiers, 2024, 25(1): 64-83.
[2] Leppänen L, Munezero M, Granroth-Wilding M, et al. Data-driven news generation for automated journalism[C]//Proceedings of the 10th international conference on natural language generation. 2017: 188-197.
[3] Li Z, Liu F, Yang W, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE transactions on neural networks and learning systems, 2021, 33(12): 6999-7019.
[4] Van Houdt G, Mosquera C, Nápoles G. A revi ew on the long short-term memory model[J]. Artificial Intelligence Review, 2020, 53(8): 5929-5955.
[5] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[6] 刘建伟, 谢浩杰, 罗雄麟. 生成对抗网络在各领域应用研究进展[J]. 自动化学报, 2020, 46(12): 2500-2536.
Liu Jianwei, Xie Haojie, Luo Xionglin. Research progress on the application of generative adversarial networks in various fields[J]. Acta Automatica Sinica, 2020, 46(12): 2500-2536.v
[7] Huang L, Yu W, Ma W, et al. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions[J]. ACM Transactions on Information Systems, 2025, 43(2): 1-55.
[8] 车万翔, 窦志成, 冯岩松, 等. 大模型时代的自然语言处理: 挑战, 机遇与发展[J]. 中国科学: 信息科学, 2023, 53(9): 1645-1687.
Che Wanxiang, Dou Zhicheng, Feng Yansong, et al. Natural language processing in the era of large models: challenges, opportunities and developments[J]. Science China: Information Sciences, 2023, 53(9): 1645-1687.
[9] 徐磊, 胡亚豪, 潘志松. 针对大语言模型的偏见性研究综述[J]. Application Research of Computers/Jisuanji Yingyong Yanjiu, 2024, 41(10).
Xu Lei, Hu Yahao, Pan Zhisong. A review of research on bias in large language models[J]. Application Research of Computers/Jisuanji Yingyong Yanjiu, 2024, 41(10).
[10] Raiaan M A K, Mukta M S H, Fatema K, et al. A review on large language models: Architectures, applications, taxonomies, open issues and challenges[J]. IEEE access, 2024, 12: 26839-26874.
[11] Wang S, Ding L, Zhan Y, et al. Fuzzy-Assisted Contrastive Decoding Improving Code Generation of Large Language Models[J]. IEEE Transactions on Fuzzy Systems, 2025, 33(8), 2689-2703.
[12] 陈慧敏, 刘知远, 孙茂松. 大语言模型时代的社会机遇与挑战 [J/OL][J]. 计算机研究与发展, 2024: 1-13.
Chen Huimin, Liu Zhiyuan, Sun Maosong. Social opportunities and challenges in the era of large language models [J/OL] [J]. Journal of Computer Research and Development, 2024: 1-13.
[13] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers). 2019: 4171-4186.
[14] Radford A, Wu J, Child R, et al. Language models are unsupervised multitask learners[J]. OpenAI blog, 2019, 1(8): 9.
[15] Brown T, Mann B, Ryder N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-1901.
[16] Grattafiori A, Dubey A, Jauhri A, et al. The llama 3 herd of models. arXiv e-prints, 2024: arXiv: 2407.21783.
[17] GLM T, Zeng A, Xu B, et al. Chatglm: A family of large language models from glm-130b to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.
[18] Yang A, Xiao B, Wang B, et al. Baichuan 2: Open large-scale language models. arXiv preprint arXiv:2309.10305, 2023.
[19] Bai J, Bai S, Chu Y, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.
[20] Achiam J, Adler S, Agarwal S, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
[21] Hendrycks D, Gimpel K. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.
[22] Agarap A F. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375, 2018.
[23] Wang L, Ma C, Feng X, et al. A survey on large language model based autonomous agents[J]. Frontiers of Computer Science, 2024, 18(6): 186345.
[24] Yu B, Wei J, Hu M, et al. Brain-inspired AI Agent: The Way Towards AGI. arXiv preprint arXiv:2412.08875, 2024.
[25] Qu C, Dai S, Wei X, et al. Tool learning with large language models: A survey[J]. Frontiers of Computer Science, 2025, 19(8): 198343.
[26] Yuan S, Song K, Chen J, et al. Easytool: Enhancing llm-based agents with concise tool instruction. arXiv preprint arXiv:2401.06201, 2024.
[27] Liang P, Jingcheng D, Jia G, et al. 大语言模型时代的信息检索综述[C]//Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 2: Frontier Forum). 2024: 98-119.
Liang P, Jingcheng D, Jia G, et al. A Review of Information Retrieval in the Era of Large Language Models[C]//Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 2: Frontier Forum). 2024: 98-119.
[28] Zhang D, Feng T, Xue L, et al. Parameter-Efficient Fine-Tuning for Foundation Models. arXiv preprint arXiv:2501.13787, 2025.
[29] Han Z, Gao C, Liu J, et al. Parameter-efficient fine-tuning for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.
[30] Tan C, Sun F, Kong T, et al. A survey on deep transfer learning[C]//Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27. Springer International Publishing, 2018: 270-279.
[31] Hu E J, Shen Y, Wallis P, et al. Lora: Low-rank adaptation of large language models[J]. ICLR, 2022, 1(2): 3.
[32]Zhang Y, Jin R, Zhou Z H. Understanding bag-of-words model: a statistical framework[J]. International journal of machine learning and cybernetics, 2010, 1(1): 43-52.
[33]Christian H, Agus M P, Suhartono D. Single document automatic text summarization using term frequency-inverse document frequency (TF-IDF)[J]. ComTech: Computer, Mathematics and Engineering Applications, 2016, 7(4): 285-294.
[34]Zhang X, Meng Q, Bos J. Retrieval-Augmented Semantic Parsing: Using Large Language Models to Improve Generalization. arXiv preprint arXiv:2412.10207, 2024.
[35]Benjamin M I S W, Yadav R, Thippareddy V S R, et al. Context-Fusion: An Intelligent Retrieval-Augmented Conversational AI Framework with Multi-Model Support[C]//2025 3rd International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS). IEEE, 2025: 965-971.
[36]Zhao Q. D-han: dynamic news recommendation with hierarchical attention network. arXiv preprint arXiv:2112.10085, 2021.
[37]Fang J, Liu C T, Kim J, et al. Multi-llm text summarization. arXiv preprint arXiv:2412.15487, 2024
[38]Wang B, Wang Z, Wang X, et al. Grammar prompting for domain-specific language generation with large language models[J]. Advances in Neural Information Processing Systems, 2023, 36: 65030-65055.
[39]Moradi M, Yan K, Colwell D, et al. A Critical Review of Methods and Challenges in Large Language Models[J]. Computers, Materials & Continua, 2025, 82(2).
[40]Deng W, Pei J, Kong K, et al. Syllogistic reasoning for legal judgment analysis[C]//Proceedings of the 2023 conference on empirical methods in natural language processing. 2023: 13997-14009.
[41] Du Z, Qian Y, Liu X, et al. Glm: General language model pretraining with autoregressive blank infilling. arXiv preprint arXiv:2103.10360, 2021.
[42] Yang A, Yang B, Zhang B, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.
[43] Lin C Y. R ouge: A package for automatic evaluation of summaries[C]//Text summarization branches out. 2004: 74-81.
[44] Zhao W, Peyrard M, Liu F, et al. MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance[J]. arXiv preprint arXiv:1909.02622, 2019.
[45] Guo B, Wang H, Xiao W, et al. Sample Design Engineering: An Empirical Study of What Makes Good Downstream Fine-Tuning Samples for LLMs[J]. arXiv preprint arXiv:2404.13033, 2024.
|