[1] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514.
[2] PAN J Z, VETERE G, GOMEZ-PEREZ J M, et al. Exploiting linked data and knowledge graphs in large organisations[M]. Switzerland: Springer International Publishing, 2017.
[3] HOGAN A, BLOMQVIST E, COCHEZ M, et al. Knowledge graphs[J]. ACM Computing Surveys, 2021, 54(4): 1-37.
[4] ZHU B, LIU Y, LI Y, et al. A survey: Knowledge graph entity alignment research based on graph embedding[J]. Artificial Intelligence Review, 2024, 57: 229.
[5] ZAVERI A, RULA A, MAURINO A, et al. Quality assessment for linked data: A survey[J]. Semantic Web, 2016, 7(1): 63-93.
[6] ZHANG B, SOH H. Extract, define, canonicalize: An LLM-based framework for knowledge graph construction[C]//Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Miami, USA: Association for Computational Linguistics, 2024: 9820-9836.
[7] WANG Q, MAO Z, WANG B, et al. Knowledge graph embedding: A survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743.
[8] MURTAGH F, CONTRERAS P. Algorithms for hierarchical clustering: An overview[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012, 2(1): 86-97.
[9] 刘春雨, 陈庆锋, 莫少聪, 等. 基于逻辑规则和图神经网络的知识图谱补全[J]. 计算机工程, 2025, 51(3): 1-10.
LIU C Y, CHEN Q F, MO S C, et al. Knowledge graph completion based on logical rules and graph neural networks[J]. Computer Engineering, 2025, 51(3): 1-10.
[10] 翟社平, 马梦瑶, 张文静, 等. 融合关系上下文语义的知识图谱补全[J/OL]. 计算机工程: 1-12[2025-05-12]. https://doi.org/10.19678/j.issn.1000-3428.0070677.
ZHAI S P, MA M Y, ZHANG W J, et al. Fusing relational contextual semantics for knowledge graph completion[J/OL]. Computer Engineering: 1-12[2025-05-12].
[11] SUN Z, HU W, LI C. Cross-lingual entity alignment via joint attribute-preserving embedding[C]//Proceedings of the International Semantic Web Conference. Cham, Switzerland: Springer, 2017: 628-644.
[12] 和红光, 线岩团, 相艳. 基于关系约束对比学习的常识知识图谱补全方法[J/OL]. 计算机工程: 1-10[2024-12-10]. https://doi.org/10.19678/j.issn.1000-3428.0069984.
HE H G, XIAN Y T, XIANG Y. Commonsense knowledge graph completion method based on relation-constrained contrastive learning[J/OL]. Computer Engineering: 1-10[2024-12-10].
[13] 王硕, 李克, 李泽霖. 面向多知识图谱融合的实体对齐优化方法[J/OL]. 计算机工程: 1-12[2024-12-25]. https://doi.org/10.19678/j.issn.1000-3428.0070058.
WANG S, LI K, LI Z L. Entity alignment optimization method for multi-knowledge graph fusion[J/OL]. Computer Engineering: 1-12[2024-12-25].
[14] ZHU H, XIE R, LIU Z, et al. Iterative entity alignment via joint knowledge embeddings[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. 2020: 4054-4060.
[15] SUCHANEK F M, ABITEBOUL S, SENELLART P. PARIS: Probabilistic alignment of relations, instances, and schema[J]. Proceedings of the VLDB Endowment, 2011, 5(3): 157-168.
[16] PAN L, QIAN K, NAGESH A, et al. LLM-based knowledge graph construction: A survey[EB/OL]. [2025-10-23]. https://arxiv.org/abs/2402.16309.
[17] GAO T, YAO X, CHEN D. SimCSE: Simple contrastive learning of sentence embeddings[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021: 6894-6910.
[18] YAN Y, LI R, WANG S, et al. ConSERT: A contrastive framework for self-supervised sentence representation transfer[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics. 2021: 5065-5075.
[19] KRAUSE A, GOLOVIN D. Submodular function maximization[M]//Tractability: Practical approaches to hard problems. Cambridge: Cambridge University Press, 2014: 71-104.
[20] LIN H, BILMES J. A class of submodular functions for document summarization[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011: 510-520.
[21] QIAN Q, ZHU S, TANG J, et al. Submodular dictionary learning for sparse coding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 3556-3565.
[22] LIU P, GUO Y, WANG F, et al. Chinese named entity recognition: The state of the art[J]. Neurocomputing, 2022, 473: 37-53.
[23] GRÜNWALD P D. The minimum description length principle[M]. Cambridge: MIT Press, 2007.
[24] CALINESCU G, CHEKURI C, PÁL M, et al. Maximizing a monotone submodular function subject to a matroid constraint[J]. SIAM Journal on Computing, 2011, 40(6): 1740-1766.
[25] PAULHEIM H. Knowledge graph refinement: A survey of approaches and evaluation methods[J]. Semantic Web, 2017, 8(3): 489-508.
[26] TISSOT H, DOBSON R. Combining string and phonetic similarity matching to identify misspelt names of drugs in medical records written in Portuguese[J]. Journal of Biomedical Semantics, 2019, 10(Suppl 1): 17.
[27] WU Y, LIU X, FENG Y, et al. Relation-aware entity alignment for heterogeneous knowledge graphs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019: 5278-5284.
[28] MAO X, WANG W, XU H, et al. Relational reflection entity alignment[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020: 1095-1104.
[29] LI Y, LI J, SUHARA Y, et al. Deep entity matching with pre-trained language models[C]//Proceedings of the VLDB Endowment. 2020, 14(1): 50-60.
[30] ZEAKIS A, PAPADAKIS G, SKOUTAS D, KOUBARAKIS M. Pre-trained embeddings for entity resolution: An experimental analysis [J]. Proceedings of the VLDB Endowment, 2023, 16(9): 2225-2238.
[31] ZHANG J, SUN H, HO J C. EMBA: Entity matching using multi-task learning of BERT with attention-over-attention[C]//Proceedings of the 27th International Conference on Extending Database Technology. Paestum, Italy: OpenProceedings.org, 2024: 281-293.
[32] PEETERS R, STEINER A, BIZER C. Entity matching using large language models[C]//Proceedings of the 28th International Conference on Extending Database Technology. Paestum, Italy: OpenProceedings.org, 2025.
[33] WANG T, CHEN X, LIN H, et al. Match, compare, or select? An investigation of large language models for entity matching[C]//Proceedings of the 31st International Conference on Computational Linguistics. 2025: 96-109.
[34] VAN HEUSDEN R, KAMPS J, MARX M. Bcubed revisited: elements like me[J]. Discov Computing, 2024, 27(5): 5.
[35] ZAPOROJETS K, DELEU J, JIANG Y, et al. Towards consistent document-level entity linking: joint models for entity linking and coreference resolution[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2022: 778-784.
[36] KIM J. A fast and integrative algorithm for clustering performance evaluation in author name disambiguation[J]. Scientometrics, 2019, 120(2): 661-681.
[37] Xue B, Zou L. Knowledge graph quality management: a comprehensive survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 4704-4724.
[38] Mohammadhassanzadeh H, Van Woensel W, Abidi S R, et al. Semantics-based plausible reasoning to extend the knowledge coverage of medical knowledge bases for improved clinical decision support[J]. BioData Mining, 2017, 10(1): 7.
[39] GONG J, FANG X, PENG J, et al. MORE: Toward improving author name disambiguation in academic knowledge graphs[J]. International Journal of Machine Learning and Cybernetics, 2024, 15(1): 37-50.
[40] DEAN J, BARROSO L A. The tail at scale[J]. Communications of the ACM, 2013, 56(2): 74-80.
|