[1] Yang, Y., Liu, X., Wang, D., et al. A CE-GAN based approach to address data imbalance in network intrusion detection systems[J]. Scientific Reports, 2025, 15: 7916.
[2] Park, C., Lee, J., Kim, Y., et al. An Enhanced AI-Based Network Intrusion Detection System Using Generative Adversarial Networks[J]. IEEE Internet of Things Journal, 2023, 10(3): 2330-2345.
[3] Awad, Z., Zakaria, M., Hassan, R. An enhanced ensemble defense framework for boosting adversarial robustness of intrusion detection systems[J]. Scientific Reports, 2025, 15: 14177.
[4] Xi, C., Wang, H., Wang, X. A novel multi-scale network intrusion detection model with transformer[J]. Scientific Reports, 2024, 14: 23239.
[5] 王振东,徐振宇,李大海,等。面向入侵检测的元图神经网络构建与分析 [J]. 自动化学报,2023, 49 (7): 1530-1548. Wang, Z. D., Xu, Z. Y., Li, D. H., & et al. (2023). Metagraph Neural Network Construction and Analysis for Intrusion Detection. Acta Automatica Sinica, 49(7), 1530-1548.
[6] Farzaneh, B., Shahriar, N., Al Muktadir, A.H., Towhid, M.S. DTL-IDS: Deep Transfer Learning-Based Intrusion Detection System in 5G Networks[C]//2023 19th International Conference on Network and Service Management (CNSM). 2023: 1-5.
[7] Zhou, J., Xu, Z., Rush, A.M., Yu, M. Automating Botnet Detection with Graph Neural Networks[EB/OL]. (2020-03-13)[2025-06-20]. https://arxiv.org/abs/2003.06344.
[8] 郭嘉琰,李荣华,张岩,等。基于图神经网络的动态网络异常检测算法 [J]. 软件学报,2020, 31 (3): 748-762. Guo, J. Y., Li, R. H., Zhang, Y., & et al. (2020). Graph Neural Network-Based Anomaly Detection Algorithm for Dynamic Networks. Journal of Software, 31(3), 748-762.
[9] Zhang, Y., Yang, C., Huang, K., Li, Y. Intrusion Detection of Industrial Internet-of-Things Based on Reconstructed Graph Neural Networks[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 2894-2905.
[10] 张子宜,宗学军,何战,等。基于 CVAE-CatBoost 的工业控制网络异常流量检测研究 [J]. 计算机工程,2023, 49 (5): 173-180.Zhang, Z. Y., Zong, X. J., He, Z., & et al. (2023). Research on Abnormal Traffic Detection in Industrial Control Network Based on CVAE-CatBoost. Computer Engineering, 49(5), 173-180.
[11] Mondragon, J.C., Branco, P., Jourdan, G.V., et al. Advanced IDS: a comparative study of datasets and machine learning algorithms for network flow-based intrusion detection systems[J]. Appl Intell, 2025, 55: 608.
[12] da Silva Ruffo, V.G., Lent, D.M.B., Komarchesqui, M.,et al. Anomaly and intrusion detection using deep learning for software-defined networks: A survey[J]. Expert Systems with Applications, 2024, 256: 124982.
[13] 郑海潇,马梦帅,文斌,等。基于GATv2的网络入侵异常检测方法 [J]. 数据与计算发展前沿,2024, 6 (1): 179-190. Zheng, H. X., Ma, M. S., Wen, B., & et al. (2024). Network Intrusion Anomaly Detection Based on GATv2. Frontiers of Data and Computing, 6(1), 179-190.
[14] Louk, M.H.L., Tama, B.A. Dual-IDS: A bagging-based gradient boosting decision tree model for network anomaly intrusion detection system[J]. Expert Systems with Applications, 2023, 213: 119030.
[15] Turukmane, A.V., Devendiran, R. M-MultiSVM: An efficient feature selection assisted network intrusion detection system using machine learning[J]. Computers & Security, 2024, 137: 103587.
[16] Huang, H., Li, T., Li, B., Wang, W., Sun, Y. A Bidirectional Differential Evolution-Based Unknown Cyberattack Detection System[J]. IEEE Transactions on Evolutionary Computation, 2025, 29(2): 459-473.
[17] Ho,J.,Jain, A., Abbeel, P. Denoising Diffusion Probabilistic Models[C]//Advances in Neural Information Processing Systems. Red Hook, NY: Curran Associates, Inc., 2020: 6840–6851.
[18] Wang, Y., Bai, W., Zhang, C., Zhang, D., Luo, W., Sun, H. Uni-Instruct: One-step Diffusion Model through Unified Diffusion Divergence Instruction[EB/OL]. (2025)[2025-06-20]. https://arxiv.org/abs/2505.20755.
[19] Liu, J., Wang, Q., Fan, H. , et al,L. Residual Denoising Diffusion Models[EB/OL]. (2024)[2025-06-20]. https://arxiv.org/abs/2308.13712.
[20] Tang B, Lu Y, Li Q, Bai Y Y, Yu J, Yu X. A Diffusion Model Based on Network Intrusion Detection Method for Industrial Cyber-Physical Systems [J]. Sensors, 2023, 23(3): 1141.
[21] Yang Y, Tang X Y, Liu Z W, Cheng J R, Fang H Z, Zhang C Y. Diff-IDS: A Network Intrusion Detection Model Based on Diffusion Model for Imbalanced Data Samples [J]. Computers, Materials & Continua, 2025, 82(3): 4389-4408.
[22] Zhu, Y., Xu, Y., Yu, F. , et al. Graph Contrastive Learning with Adaptive Augmentation[C]//Proceedings of the Web Conference 2021. New York, NY: ACM, 2021: 2069–2080. doi: 10.1145/3442381.3449802.
[23] Chen, B., Zhang, J., Zhang, X., et al. Graph Contrastive Learning for Anomaly Detection[EB/OL]. (2022)[2025-06-20]. https://arxiv.org/abs/2108.07516.
[24] Liu, Z., Cao, C., Tao, F., et al. Revisiting Graph Contrastive Learning for Anomaly Detection[C]//Proceedings of the European Conference on Artificial Intelligence. 2023.
[25] 郭盈盈, 张冬梅, 李成龙. 基于深度聚类与对比学习的网络入侵检测[J]. 软件导刊, 2025, 24(03): 119-126. DOI: 10.11907/rjdk.241257. GUO Yingying, ZHANG Dongmei, LI Chenglong. Network Intrusion Detection Based on Deep Clustering and Contrastive Learning[J]. Software Guide, 2025, 24(03): 119-126. DOI: 10.11907/rjdk.241257.
[26] Duraz R, Espes D, Francq J, Vaton S. SECL: A Zero-Day Attack Detector and Classifier Based on Contrastive Learning and Strong Regularization[C]// Proceedings of the 19th International Conference on Availability, Reliability and Security. New York, NY, USA: Association for Computing Machinery, 2024:22(1-12). DOI: 10.1145/3664476.3664505.
[27] Luo J, Zhang Y, Wu Y, Xu Y, Guo X, Shang B. A Multi-Channel Contrastive Learning Network Based Intrusion Detection Method[J]. Electronics, 2023, 12(4): 949. DOI: 10.3390/electronics12040949.
[28] Jiang, Z. Multi-Scale Contrastive Learning Networks for Graph Anomaly Detection[C]//2024 4th Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS). 2024: 618-625.
[29] Li, J., Jin, Y., Gao, H., et al. Hierarchical Topology Isomorphism Expertise Embedded Graph Contrastive Learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(12): 13518-13527.
|