[1] LECUN Y, BENGIO Y, HINTON G. Deep learning[J] Nature. 2015, 521(7553): 436−444.
[2] UCHIDA Y, NAGAI Y, SAKAZAWA S, et al. Embedding watermarks into deep neural networks[C]//. Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval. Bucharest: ACM. 2017: 269-277.
[3] HONSINGER C. Digital watermarking[J]. Journal of Electronic Imaging. 2002, 11(3): 414.
[4] CHEN Huili, ROUHANI B D, CHENG FU, et al. DeepMarks: a secure fingerprinting framework for digital rights management of deep learning models[C]//. Proceedings of the 2019 on International Conference on Multimedia Retrieval. Ottawa: ACM, 2019: 105-113.
[5] WANG Dehui, ZHOU Shuang, ZHANG Yingqian. A spatiotemporal chaos based deep learning model watermarking scheme [J]. Applied Soft Computing.2024, 164: 112004.
[6] 高光勇, 徐子琦, 方伟.基于特征结合和权重对抗训练的鲁棒模型水印方案[J]. 计算机辅助设计与计算机图形学学报. 2024. DOI: 10.3724/SP.J.1089.2023-00805.
GAO Guangyong, Xu Ziqi, Fang Wei. Robust Model Watermarking Scheme Based on Feature Combination and Weight Adversarial Training[J]. Journal of Computer-Aided Design & Computer Graphics.2024,DOI:10.3724/SP.J.1089.2023-00805
[7] Mo M, WANG C, Bian S. A Unique Identification-Oriented Black-Box Watermarking Scheme for Deep Classification Neural Networks[J]. Symmetry.2024, 16: 299.
[8] 陈玮彤, 唐伟, 朱长青等,.基于纹理触发器和私有类的遥感场景分类模型水印算法[J]. 地理与地理信息科学. 2025, 41(3): 1-9.
CHEN Weitong, Tang Wei, Zhu Changqin, et al. Texture-trigger and private-class basedwatermarking for remote sensing scene classification models[J]. Geography & Geographic Information Science. 2025, 41(3): 1-9.
[9] Yossi Adi, Carsten Baum, Moustapha Cisse, et al. Turning your weakness into a strength: watermarking deep neural networks by backdooring[C]//. USENIX Association. 2018: 1615-1631.
[10] JI Junhao, ZHANG Yushu, ZHAO Ruoyu, et al. Adversarial visible watermark attack based on intelligent evolutionary algorithm[J]. Computer Engineering & Science. 2024, 46(01): 63-71.
[11] WU Xia, ZHENG Hongying, XIAO Di. A dual-verification model watermarking scheme based on certification files[J]. Computer Engineering & Science. 2024, 46(04): 647-656.
[12] MA Miao, TIAN Hongpeng, HAO Chongyang. A multitype watermark scheme[J]. Journal of Southwest Jiaotong University. 2003, 38(2): 120-124.
[13] 薛栋, 周亚训, 金炜. 版权保护和内容认证的全盲双功能数字水印算法[J]. 电信科学. 2024,33(2): 79-89.
XUE Dong, ZHOU Yaxun, JIN, Wei. A full-blind dual-function digital watermarking algorithm for copyright protection and content authentication[J]. Telecommunication Science. 2024,33(2): 79-89.
[14] ZHANG Liyan, et al. A Color Image Watermark Algorithm Based on Logistic and DWT-SVD [J]. Computer Science and Technology. 2024, 3 (1): 7.
[15] 张耀元, 原继东,刘海洋. 基于局部扰动的时间序列预测对抗攻击[J]. 软件学报. 2024, 35(11): 5210-5227.
ZHANG Yaoyuan, YUAN Jidong, LIU Haiyang, et al. Adversarial attack on time series prediction based on local perturbation[J]. Journal of Software. 2024, 35(11): 5210-5227.
[16] LI Hanchao, XIONG Pengfei, FAN Haojian, et al. DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA. 2019: 9514-9523.
[17] DONG Tian, LI Shaofeng, CHEN Guoxing, et al. RAI2: Responsible identity audit governing the artificial intelligence[C]//Proc of the 30th Annual Network and Distributed System Security Symp (NDSS 2023). San Diego, California, USA: Internet Soc. 2023: 1-18.
[18] TAN Jingxuan, ZHONG Nan, GUO Yusheng, et al. Review of watermarking for deep neural networks[J]. Journal of University of Shanghai for Science and Technology. 2024, 46(3): 225-242.
[19] 李玄珮,黄土,罗书卿等.深度学习模型版权保护技术研究综述[J].信息安全学报. 2025, 10(1): 17-35.
LI Peixuan, HUANG Tu, LUO Shuqin, et al. A Review of Copyright Protection Technologies for Deep Learning Models [J]. Journal of Information Security. 2025, 10(1): 17-35.
[20] HUANG Zhihui, XIAO Xiangli, ZHANG Yushu, et al. Copyright protection of open-sourced datasets based on invisible backdoor watermarking[J]. Computer Engineering & Science. 2024, 46(06): 1013-1021.
[21] 李璇, 邓天鹏, 熊金波, 等. 基于模型后门的联邦学习水印[J]. 软件学报, 2024, 35(7): 3454-3468
Li Xuan, DENG Tianpeng, Xiong Jinbo, et al. Watermarking for federated learning based on model backdoor[J]. Journal of Software. 2024, 35(7): 3454-3468.
[22] LEE S, SONG W, JANA S, ea tl. Evaluating the Robustness of Trigger Set-Based Watermarks Embedded in Deep Neural Networks[J]. IEEE Transactions on Dependable and Secure Computing. 2023, 20(4): 3434-3448.
[23] 张天骐, 马焜然, 邹涵. DWT-DCT 结合 SURF 与PSO的优化鲁棒水印算法[J]. 信号处理. 2024, 40(6): 1148-1159.
ZHANG Tianqi, MA Kunran, ZOU Han, et al. An optimized robust watermarking algorithm combining DWT-DCT with SURF and PSO[J]. Journal of Signal Processing. 2024, 40(6): 1148-1159.
[24] HE Xuanli, XU Qiongkai, LYU Lingjuan, et al. Protecting Intellectual Property of Language Generation APIs with Lexical Watermark[C]// AAAI Conference on Artificial Intelligence. 2022: 10758-10766.
[25] WEN Quan, SUN Tanfeng, WANG Shuxun. Concept and Application of Zero-Watermark[J]. Acta Electron Sin. 2003, 31(2): 214-216.
[26] LI Fangqi, ZHAO Haodong, DU Wei, et al. Revisiting the information capacity of neural network watermarks: Upper bound estimation and beyond[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024: 21331-21339.
[27] CHENG Gong, LIU Jing, GONG Ming, et al. Robust medical zero-watermarking algorithm based on Residual-DenseNet[J]. IET Biometrics. 2022, 11: 547–556.
[28] NAWAZ S A, LI J, SHOUKAT M U, et al. Hybrid medical image zero watermarking via discrete wavelet transform-ResNet101 and discrete cosine transform[J]. Computers and Electrical Engineering. 2023, 112: 108985.
[29] LIU Gang, XIANG Ruotong, LIU Jing, et al. An invisible and robust watermarking scheme using convolutional neural networks[J]. Expert Systems with Applications. 2022, 210: 118529.
[30] HUANG Yanyun, LI Xinhua, DU Zhengshun, et al. Spatiotemporal Enhancement and Interlevel Fusion Network for Remote Sensing Images Change Detection[J]. in IEEE Transactions on Geoscience and Remote Sensing. 2024, 62: 1-14.
[31] MA Xianping, ZHANG Xiaokang, LIU Ming et al. A Multilevel Multimodal Fusion Transformer for Remote Sensing Semantic Segmentation[J]. in IEEE Transactions on Geoscience and Remote Sensing. 2024,62: 1-15.
[32] WANG Zixu, ZHANG Congxuan, CHEN Zhen, et al. ACR-Net: Learning High-Accuracy Optical Flow via Adaptive-Aware Correlation Recurrent Network[J]. in IEEE Transactions on Circuits and Systems for Video Technology. 2024, 34(10): 9064-9077.
[33] HU Kun, ZHAI Dakai, GAO Heng, et al. Rad-Mark: Reliable adversarial zero-watermarking[J]. Neurocomputing. 2024,546:111807.
[34] GE Chonghui, YUN Longdi, SUN Yuxin, et al. A Database Collusion Detection and Measurement on Bloom Filter[C]//. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Chongqing, China. 2020: 232-238.
[35] FAN Lixin, K W NG, C S CHAN, et al. DeepIPR: Deep Neural Network Ownership Verification with Passports[J]. In IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021,44(10):6122-6139.
[36] CUI Qi, MENG Ruohan, XU Chaohui, et al. Steganographic Passport: An Owner and User Verifiable Credential for Deep Model IP Protection Without Retraining[C]//. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2024:12302-12311.
[37] Liu Hanwen, Zhenyu Weng, Yuesheng Zhu, et al Trapdoor normalization with irreversible ownership verification[J]. In International Conference on Machine Learning. 2023:22177-22187.
[38] Tan Mingxing, and Q V Le. Efficientnet: Rethinking model scaling for convolutional neural networks[C]//. International conference on machine learning. PMLR. 2019. 6105-6114.
[39] GAO Huang, LIU Zhuang, Van Der Maaten L,et al. Densely connected convolutional networks[C]//. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017:4700-4708.
|