[1] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778.
[2] WANG J, SUN K, TIAN S, et al. Deep High-Resolution Representation Learning for Visual Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364.
[3] VOULODIMOS A, DOULAMIS N, DOULAMIS A, et al. Deep learning for computer vision: A brief review[J]. Computational Intelligence and Neuroscience, 2018, 2018: 1-13.
[4] LU W, DUAN Y, SONG Y. Self-Attention-Based Convolutional Neural Networks for Sentence Classification[C]//Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications. Chengdu, China: IEEE, 2020: 2065-2069.
[5] JAIN P, JAIN A, NRUSIMHA A, et al. Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization[C]//Proceedings of Machine Learning and Systems. 2020, 2: 497-511.
[6] LIU Q, WU H, WANG J, et al. 33.2 A Fully Integrated Analog ReRAM Based 78.4TOPS/W Compute-In-Memory Chip with Fully Parallel MAC Computing[C]//2020 IEEE International Solid-State Circuits Conference - Digest of Technical Papers. San Francisco, CA, USA: IEEE, 2020: 500-502.
[7] PONZINA F, RIOS M, ANSALONI G, et al. A Flexible In-Memory Computing Architecture for Heterogeneously Quantized CNNs[C]//2021 IEEE Computer Society Annual Symposium on VLSI. Tampa, FL, USA: IEEE, 2021: 164-169.
[8] 刘雨婷. 基于忆阻交叉阵列的卷积神经网络计算研究[D]. 电子科技大学, 2023.
Liu Yuting, Research on Convolutional Neural Nework computation Based on Memristor Crossbar Array[D]. University of Electronic Science and Technology of China, 2023.
[9] Sabri M, Riera M, González A. ReDy: A Novel ReRAM-centric Dynamic Quantization Approach for Energy-efficient CNN Inference[J]. ACM Transactions on Architecture and Code Optimization (TACO), 2024, 21(3): 1–25.
[10] AZAMAT A, ASIM F, KIM J, et al. Automated quantization framework for reducing adc size in reram-based neural network accelerators[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(12): 4897-4908.
[11] LI B, QU S, WANG Y. An automated quantization framework for high-utilization rram-based pim[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(3): 583-596.
[12] 陈长林, 骆畅航, 刘森, 等. 忆阻器类脑计算芯片研究现状综述[J]. 国防科技大学学报, 2023, 45(01): 1-14.
CHEN Changlin, LUO Changhang, LIU Sen, et al. Review on the memristor based neuromorphic chips[J]. Journal of National University of Defense Technology, 2023, 45(1): 1-14.
[13] ZHU Z, SUN H, XIE T, et al. A Configurable Multi-Precision CNN Computing Framework Based on Single Bit RRAM[C]//2019 56th ACM/IEEE Design Automation Conference. Las Vegas, NV, USA: IEEE, 2019: 1-6.
[14] DONG Z, YAO Z, GHOLAMI A, et al. HAWQ: Hessian AWare Quantization of Neural Networks With Mixed-Precision[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE, 2019: 293-302.
[15] YU J, MAI S, ZHANG P, et al. Mixed-precision post-training quantization for learned image compression[J]. IEEE Internet of Things Journal, 2025, 12(16): 34392-34405.
[16] ZHANG L, HE Y, FEI W, et al. Towards accurate post-training quantization for reparameterized models[J]. Applied Intelligence, 2024, 55: 606.
[17] YANG D, HE N, HU X, et al. Post-training quantization for reparameterization via coarse & fine weight splitting[J]. Journal of Systems Architecture, 2024, 147: 103065.
[18] YANG H R, DUAN L, CHEN Y R, et al. BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network Quantization[C]//9th International Conference on Learning Representations. Virtual Event, Austria: OpenReview.net, 2021.
[19] BENGIO Y, LÉONARD N, COURVILLE A. Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation[J/OL]. CoRR, 2013, abs/1308.3432.
[20] CAI Y, TANG T, XIA L, et al. Low bit-width convolutional neural network on rram [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(7): 1414-1427.
[21] XIA T, ZHAO B, MA J, et al. An energy-and-area-efficient cnn accelerator for universal powers-of-two quantization[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(3): 1242-1255.
[22] WU X, HANSON E, WANG N, et al. Block-wise mixed-precision quantization: Enabling high efficiency for practical reram-based dnn accelerators[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(12): 4558-4571.
[23] GONG R, LIU X, LI Y, et al. Pushing the Limit of Post-Training Quantization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(7): 5556-5570.
[24] CHEN J, ZHANG Y, LIU S, et al. Adaptive Quantization with Mixed-Precision Based on Low-Cost Proxy[C]//ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes Island, Greece: IEEE, 2024: 6720-6724.
[25] BAI J, SUN S, ZHAO W, et al. Cimq: A hardware-efficient quantization framework for computing-in-memory-based neural network accelerators[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(1): 189-202.
[26] Q. Qi, Y. Lu, J. Li, et al. Learning Low Resource Consumption CNN Through Pruning and Quantization[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(2): 886-903.
[27] HUANG G, LIU Z, PLEISS G, et al. Convolutional Networks with Dense Connectivity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 8704-8716.
[28] ZHU Z, SUN H, XIE T, et al. Mnsim 2.0: A behavior-level modeling tool for processing-in-memory architectures[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(11): 4112-4125.
|