[1] Wang Z , Xu H , Liu J ,et al.Resource-Efficient Federated Learning with Hierarchical Aggregation in Edge Computing[C]//IEEE INFOCOM 2021 - IEEE Conference on Computer Communications.IEEE, 2021.DOI:10.1109/INFOCOM42981.2021.9488756.
[1] Xu B , Xia W , Wen W ,et al.Adaptive Hierarchical Federated Learning Over Wireless Networks[J].IEEE Transactions on Vehicular Technology, 2022, 71:2070-2083.DOI:10.1109/TVT.2021.3135541.
[2] Liu L , Zhang J , Song S ,et al.Hierarchical Quantized Federated Learning: Convergence Analysis and System Design[J]. 2021.DOI:10.48550/arXiv.2103.14272.
[3] Wu Q, Chen X, Ouyang T, et al. HiFlash: Communication-Efficient Hierarchical Federated Learning With Adaptive Staleness Control and Heterogeneity-Aware Client-Edge Association[J/OL]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(5): 1560-1579. DOI:10.1109/tpds.2023.3238049.
[4] Deng Y, Lyu F, Xia T, et al. A Communication-Efficient Hierarchical Federated Learning Framework via Shaping Data Distribution at Edge[J/OL]. IEEE/ACM Transactions on Networking, 2024, 32(3): 2600-2615. DOI:10.1109/tnet.2024.3363916.
[5] Ma Q, Xu Y, Xu H, et al. FedUC: A Unified Clustering Approach for Hierarchical Federated Learning[J/OL]. IEEE Transactions on Mobile Computing, 2024, 23(10): 9737-9756. DOI:10.1109/tmc.2024.3366947.
[6] Luo L, Zhang C, Yu H, et al. Communication-Efficient Federated Learning With Adaptive Aggregation for Heterogeneous Client-Edge-Cloud Network[J/OL]. IEEE Transactions on Services Computing, 2024, 17(6): 3241-3255. DOI:10.1109/tsc.2024.3399649.
[7] Zhou H, Zheng Y, Huang H, et al. Toward Robust Hierarchical Federated Learning in Internet of Vehicles[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5600-5614. DOI:10.1109/tits.2023.3243003.
[8] Yang X, Liwang M, Wang X, et al. HEART: Achieving Timely Multi-Model Training for Vehicle-Edge-Cloud-Integrated Hierarchical Federated Learning[A/OL]. arXiv, 2025[2025-05-23]. http://arxiv.org/abs/2501.09934. DOI:10.48550/arXiv.2501.09934.
[9] 冯奕铭, 钱珍, 李光辉, 代成龙. 异构边缘环境下自适应分层联邦学习协同优化方法[J]. 计算机研究与发展, 2025, 62(6): 1416-1433. DOI: 10.7544/issn1000-1239.202550146
Feng Yiming, Qian Zhen, Li Guanghui, Dai Chenglong. Synergistic Optimization Method for Adaptive Hierarchical Federated Learning in Heterogeneous Edge Environments[J]. Journal of Computer Research and Development, 2025, 62(6): 1416-1433. DOI: 10.7544/issn1000-1239.202550146
[10] He, Zixiao, et al. "FedDT: A Communication-Efficient Federated Learning via Knowledge Distillation and Ternary Compression."[J] Electronics 14.11 (2025): 2183.
[11] Haddadpour, F., Kamani, M. M., Mokhtari, A., & Mahdavi, M. (2021, March). Federated learning with compression: Unified analysis and sharp guarantees. In International Conference on Artificial Intelligence and Statistics[C] (pp. 2350-2358). PMLR.
[12] Abad, Mehdi Salehi Heydar, et al. "Hierarchical federated learning across heterogeneous cellular networks." [C]ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020.
[13] 王汝言, 陈伟, 张普宁, 吴大鹏, 杨志刚. 异构物联网下资源高效的分层协同联邦学习方法[J]. 电子与信息学报, 2023, 45(8): 2847-2855. doi: 10.11999/JEIT220914
WANG Ruyan, CHEN Wei, ZHANG Puning, WU Dapeng, YANG Zhigang. Resource-Efficient Hierarchical Collaborative Federated Learning in Heterogeneous Internet of Things[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2847-2855. doi: 10.11999/JEIT220914
[14] McMahan H B, Moore E, Ramage D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[A/OL]. arXiv, 2023[2025-05-24]. http://arxiv.org/abs/1602.05629. DOI:10.48550/arXiv.1602.05629.
[15] Liu L, Zhang J, Song S H, et al. Edge-assisted hierarchical federated learning with non-iid data[J]. arXiv preprint arXiv:1905.06641, 2019.
[16] Xie C , Koyejo S , Gupta I .Asynchronous Federated Optimization[J]. 2019.DOI:10.48550/arXiv.1903.03934.
[17] Yosinski J , Clune J , Bengio Y ,et al.How transferable are features in deep neural networks?.2014[2025-05-24].
[18] Krizhevsky A .One weird trick for parallelizing convolutional neural networks[J].Eprint Arxiv, 2014.DOI:http://hgpu.org/?p=11941.
[19] Oh J , Kim S , Yun S Y .FedBABU: Towards Enhanced Representation for Federated Image Classification[J]. 2021.DOI:10.48550/arXiv.2106.06042.
[20] Nguyen J , Malik K , Zhan H ,et al.Federated Learning with Buffered Asynchronous Aggregation[J]. 2021.DOI:10.48550/arXiv.2106.06639.
[21] Zhou C , Tian H , Zhang H ,et al.TEA-fed: time-efficient asynchronous federated learning for edge computing[C]//CF '21: Computing Frontiers Conference.2021.DOI:10.1145/3457388.3458655.
[22] Chen Y , Sun X , Jin Y .Communication-Efficient Federated Deep Learning With Layerwise Asynchronous Model Update and Temporally Weighted Aggregation[J].IEEE Trans Neural Netw Learn Syst, 2020(10).DOI:10.1109/TNNLS.2019.2953131.
[23] Shi G , Li L , Wang J ,et al.HySync: Hybrid Federated Learning with Effective Synchronization[J].IEEE, 2020.DOI:10.1109/HPCC-SmartCity-DSS50907.2020.00080.
[24] Yurochkin M , Agarwal M , Ghosh S ,et al.Bayesian Nonparametric Federated Learning of Neural Networks[J]. 2019.DOI:10.48550/arXiv.1905.12022.
|