[1] SINGHAL A. Introducing the knowledge graph: things, not strings [EB/OL]. [2021-11-19].
https://blog.google/products/search/introducing-knowledge-graph -things-not/.
[2] WIKIPEDIA. Knowledge graph [EB/OL]. [2016-05-09]. https://en.wikipedia.org/wiki/Knowledge_Graph.
[3] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606.
XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and
Technology of China, 2016, 45(4): 589-606. (in Chinese)
[4] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge
fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New
York, USA: ACM Press, 2014: 601-610.
[5] HOBBS J R, APPELT D, BEAR J, et al. Fastus: a system for extracting information from natural-language text[C]//Proceedings
of the 4th Message Understanding Conference. Washington D.C., USA: IEEE Press, 1992: 29-32.
[6] KIM J H, WOODLAND P C. A rule-based named entity recognition system for speech input[C]//Proceedings of the 6th
International Conference on Spoken Language Processing. Beijing, China: ISCA, 2000: 528‑531.
[7] LIU X H, ZHANG S D, WEI F R, et al. Recognizing named entities in tweets[C]//Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL, 2011: 359-367.
[8] 何炎祥, 罗楚威, 胡彬尧. 基于CRF和规则相结合的地理命名实体识别方法[J]. 计算机应用与软件, 2015, 32(1): 179-185,
202.
HE Y X, LUO C W, HU B Y. Geographic entity recognition method based on CRF model and rules combination[J]. Computer
Applications and Software, 2015, 32(1): 179-185, 202. (in Chinese)
[9] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition.[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. San Diego, USA: ACL, 2016:260-270.
[10] DONG X S, QIAN L J, GUAN Y, et al. A multiclass classification method based on deep learning for named entity recognition
in electronic medical records[C]//Proceedings of the 2016 New York Scientific Data Summit. Washington D. C., USA: IEEE
Press, 2016:1-10.
[11] PENG N, DREDZE M. Improving named entity recognition for Chinese social media with word segmentation representation
learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany: ACL,
2016: 149-155.
[12] 尹光花, 陈鹏. 基于双向LSTM模型的中文命名实体识别[J]. 信息技术与信息化, 2021, (10): 44-46.
YIN G H, CHEN P. Chinese named entity recognition based on a bidirectional LSTM model[J]. Information Technology and
Informatization, 2021, (10): 44-46. (in Chinese)
[13] 封红旗, 孙杨, 杨森, 等. 基于BERT的中文电子病历命名实体识别[J]. 计算机工程与设计, 2023, 44(4): 1220-1227.
FENG H Q, SUN Y, YANG S, et al. Chinese electronic medical record named entity recognition based on BERT methods[J].
Computer Engineering and Design, 2023, 44(4): 1220-1227. (in Chinese)
[14] 王为国. 基于Bert的命名实体识别研究[D]. 广州: 广州大学, 2021.
WANG W G. Research on named entity recognition based on Bert[D]. Guangzhou: Guangzhou University, 2021. (in Chinese)
[15] 陈琛, 刘小云, 方玉华. 融合注意力机制的电子病历命名实体识别[J]. 计算机技术与发展, 2020, 30(10): 216-220.
CHEN C, LIU X Y, FANG Y H. Named entity recognition in electronic medical record introducing attention mechanisms[J].
Computer Technology and Development, 2020, 30(10): 216-220. (in Chinese)
[16] 常君. 基于注意力机制的命名实体识别研究[D]. 太原: 太原理工大学, 2022.
CHANG J. Research on named entity recognition based on attention mechanism[D]. Taiyuan: Taiyuan University of Technology,
2022. (in Chinese)
[17] GUI T, MA R T, ZHANG Q, et al. CNN-based Chinese NER with lexicon rethinking [C]//Proceedings of the 28th International
Joint Conference on Artificial Intelligence. Macao, China: IJCAI, 2019: 4982-4988.
[18] 颜士军, 朱红梅, 王雅童, 等. 基于字词融合和注意力机制的兽药文本命名实体识别[J].中国农机化学报, 2025, 46(3):
336-342, 352.
YAN S J, ZHU H M, WANG Y T, et al. Named entity recognition of veterinary drug text based on character and word fusion and
attention mechanism[J]. Journal of Chinese Agricultural Mechanization, 2025, 46(3): 336-342, 352. (in Chinese)
[19] WU C X, KE W J, WANG P, et al. ConsistNER: towards instructive NER demonstrations for LLMs with the consistency of
ontology and context[C]//Proceedings of the 38th AAAI Conference on Artificial Intelligence. Menlo Park, USA: AAAI Press,
2024: 19234-19242.
[20] ZHU X Y, DAI F F, GU X Y, et al. GL-NER: generation-aware large language models for few-shot named entity
recognition[C]//Proceedings of the 2024 International Conference on Artificial Neural Networks. Cham, Switzerland: Springer,
2024: 433-448.
[21] ZHANG Z, ZHAO Y, GAO H, et al. Linkner: linking local named entity recognition models to large language models using
uncertainty[C]//Proceedings of the ACM Web Conference 2024. New York, USA: ACM Press, 2024: 4047-4058.
[22] RILOFF E. Automatically constructing a dictionary for information extraction tasks[C]//Proceedings of the 11th National
Conference on Artificial Intelligence. Menlo Park, USA: AAAI Press, 1993: 811-816.
[23] BOLLEGALA D T, MATSUO Y, ISHIZUKA M. Relational duality: unsupervised extraction of semantic relations between
entities on the web[C]//Proceedings of the 19th International Conference on World Wide Web. New York, USA: ACM Press,
2010: 151-160.
[24] KAMBHATLA N. Combining lexical, syntactic, and semantic features with maximum entropy models for extractrelations[C]//Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions. Stroudsburg, USA: ACL, 2004:
22-25.
[25] SUN L, HAN X. A feature-enriched tree kernel for relation extraction[C]//Proceedings of the 52nd Annual Meeting of the Associa
tion for Computational Linguistics. Baltimore, USA: ACL, 2014: 61-67.
[26] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation
classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:
ACL, 2016: 207-212.
[27] SAHU S K, CHRISTOPOULOU F, MIWA M, et al. Inter-sentence relation extraction with document-level graph convolutional
neural network[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy:
ACL, 2019:4309-4316.
[28] LI J Z. Hyperbolic graph convolutional network relation extraction model combining dependency syntax and contrastive
learning[J]. International Journal of Computational Intelligence Systems, 2025, 18: 18.
[29] CHEN X, ZHANG N Y, XIE X, et al. KnowPrompt: knowledge-aware prompt-tuning with synergistic optimization for relation
extraction[C]//Proceedings of the ACM Web Conference 2022. New York, USA: ACM Press, 2022: 2778 - 2788.
[30] WADHWA S, AMIR S, WALLACE B C. Revisiting relation extraction in the era of large language models[C]//Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics. Toronto, Canada: ACL, 2023: 15566-15589.
[31] ZHOU S Z, MENG Y, JIN B, et al. Grasping the essentials: tailoring large language models for zero-shot relation
extraction[C]//Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Miami, USA:
ACL, 2024: 13462-13486.
[32] HU M Q, LIU B. Mining and summarizing customer reviews[C]//Proceedings of the 10th ACM SIGKDD international
conference on Knowledge discovery and data mining. New York, USA: ACM Press, 2004:168-177.
[33] MUKHERJEE A, LIU B. Aspect extraction through semi-supervised modeling[C]//Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics. Jeju Island, Korea: ACL, 2012: 339-348.
[34] 苏明星, 吴厚月, 李健, 等. 基于多层交互注意力机制的商品属性抽取[J]. 数据分析与知识发现, 2023, 7(2):108-118.
SU M X, WU H Y, LI J, et al. Extracting commodity attributes based on multi-level interactive attention mechanism[J]. Data
Analysis and Knowledge Discovery, 2023, 7(2):108-118. (in Chinese)
[35] COHEN W W, RICHMAN J. Learning to match and cluster large high-dimensional data sets for data integration[C]//Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press,
2002: 475-480.
[36] NIU X, RONG S, WANG H F, et al. An effective rule miner for instance matching in a web of data[C]//Proceedings of the 21st
ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2012: 1085-1094.
[37] YAN Z H, PENG R, WY H Y. Similarity propagation based semi-supervised entity alignment[J]. Engineering Applications of
Artificial Intelligence, 2024,130: 107787.
[38] COCHINWALA M, KURIEN V, LALK G, et al. Efficient data reconciliation[J]. Information Sciences, 2001, 137(1-4): 1-15.
[39] SARAWAGI S, BHAMIDIPATY A. Interactive deduplication using active learning[C]//Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2002: 269-278.
[40] ZHANG C X, YANG X Z, WANG S L, et al. A multi-view fusion approach for entity alignment[C]//Proceedings of the IEEE
16th International Conference on Cognitive Informatics & Cognitive Computing. Washington D. C., USA: IEEE Press, 2017:
388-393.
[41] BORDES A, USUNIER N, GARCÍA-DURÁN A, et al. Translating embeddings for modeling multi-relational
data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. South Lake Tahoe, USA:
Curran Associates Inc., 2013: 2787-2795.
[42] CHEN M, TIAN Y T, CHANG K W, et al. Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual
entity alignment[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Menlo Park, USA: AAAI
Press, 2018: 3998-4004.
[43] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings
of the 29th AAAI Conference on Artificial Intelligence. Menlo Park, USA: AAAI Press, 2015: 2181-2187.
[44] WANG Z C, LV Q S, LAN X H, et al. Cross-lingual knowledge graph alignment via graph convolutional
networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium:
ACL, 2018: 349-357.
[45] XIE F, SONG X, ZENG X, et al. MixTEA: semi-supervised entity alignment with mixture teaching[C]//Findings of the
Association for Computational Linguistics: EMNLP 2023. Singapore: ACL, 2023: 886-896.
[46] LIU B, LAN T C, HUA W, et al. Dependency-aware self-training for entity alignment[C]//Proceedings of the 16th ACM
International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2022: 780-788.
[47] LIU X K, ZHANG K, LIU Y, et al. RHGN: relation-gated heterogeneous graph network for entity alignment in knowledge
graphs[C]//Findings of the Association for Computational Linguistics: ACL 2023. Toronto, Canada: ACL, 2023: 8683-8696.
[48] TANG J H, ZHAO K F, LI J. A fused Gromov-Wasserstein framework for unsupervised knowledge graph entity
alignment[C]//Findings of the Association for Computational Linguistics: ACL 2023. Toronto, Canada: ACL, 2023: 3320-3334.
[49] MAO X, WANG W T, WU Y B, et al. From alignment to assignment: frustratingly simple unsupervised entity
alignment[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. San Francisco, USA:
ACL, 2021: 2843-2853.
[50] XIN K X, SUN Z Q, HUA W, et al. Informed multi-context entity alignment[C]//Proceedings of the 15th ACM International
Conference on Web Search and Data Mining. New York, USA: ACM Press, 2022: 1197-1205.
[51] JIANG X H, SHEN Y H, SHI Z C, et al. Unlocking the power of large language models for entity alignment[C]//Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics. Bangkok, Thailand: ACL, 2024: 7566-7583.
[52] LU C L, LI C X, CHENG J W, et al. Breaking the noise barrier: LLM-guided semantic filtering and enhancement for
multi-modal entity alignment[C]//Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing.
Suzhou, China: ACL, 2025: 33141-33155.
[53] YE R, LI X, FANG Y J, et al. A vectorized relational graph convolutional network for multi-relational network
alignment[C]//Proceedings of the 28th International Conference on Artificial Intelligence Main Track. Macau, China: IJCAI
Press, 2019: 4135-4141.
[54] WU Y T, LIU X, FENG Y S, et al. Jointly learning entity and relation representations for entity alignment[C]// Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: ACL, 2019: 240-249.
[55] DONG B B, BU C Y, ZHU Y, et al. Simplified multi-view graph neural network for multilingual knowledge graph completion[J].
Frontiers of Computer Science, 2025, 19(7): 197324.
[56] TANG J, QU M, WANG M Z, et al. Line: large-scale information network embedding[C]// Proceedings of the 24th International
Conference on World Wide Web. Florence, Italy: IW3C2, 2015: 1067-1077.
[57] CAO Y X, HOU L, LI J Z, et al. Neural collective entity linking[C]//Proceedings of the 27th International Conference on
Computational Linguistics. Santa Fe, USA: ACL, 2018: 675–686.
[58] YANG Y, IRSOY O, RAHMAN K S. Collective entity disambiguation with structured gradient tree boosting[C]//Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational Linguistics. New Orleans, USA: ACL,
2018: 777-786.
[59] WANG C Z, SUN X, YU H F, et al. Entity disambiguation leveraging multi-perspective attention[J]. IEEE Access, 2019,7:113963-113974.
[60] DENG C H, DENG H F, LI C R. A scholar disambiguation method based on heterogeneous relation-fusion and attribute
enhancement[J]. IEEE Access, 2020, 8: 28375-28384.
[61] 姜丽婷, 古丽拉·阿东别克, 马雅静. 基于混合卷积网络的短文本实体消歧[J]. 中文信息学报, 2021, 35(11): 101-108.
JIANG L T, GULILA A, MA Y J. Mixed convolution network based entity disambiguation for short text[J]. Journal of Chinese
Information Processing, 2021, 35(11): 101-108. (in Chinese)
[62] TASAWONG P, LIMKONCHOTIWAT P, MANAKU P, et al. Efficient overshadowed entity disambiguation by mitigating
shortcut
learning[C]//Proceedings
of the 2024 Conference on Empirical Methods in Natural Language
Processing. Miami, USA:ACL, 2024: 15313-15321.
[63] ZHU G G, IGLESIAS A C. Exploiting semantic similarity for named entity disambiguation in knowledge graphs[J]. Expert
Systems with Applications, 2018, 101:8-24.
[64] 石水倩, 金晶, 沈耕宇, 等. 基于多元相似度融合的中文命名实体消歧方法[J]. 数据分析与知识发现, 2024, 8(2): 56-64.
SHI S Q, JIN J, SHEN G Y, et al. Chinese named entity disambiguation based on multiple similarity fusion[J]. Data Analysis and
Knowledge Discovery, 2024, 8(2): 56-64. (in Chinese)
[65] MUÑOZ-JORDÁN D, RUIZ G, CABRIADA P, et al. 3SA: an entity-linking algorithm for the Institution Name Disambiguation
problem in affiliations using edit distance[J]. Scientometrics, 2025, 130: 4073-4091.
[66] DONG X L, BERTI-EQUILLE L, SRIVASTAVA D, et al. Integrating conflicting data: the role of source
dependence[J]//Proceedings of the VLDB Endowment, 2009, 2(1): 550-561.
[67] REKATSINAS T, JOGLEKAR M, GARCIA-MOLINA H, et al. SLiMFast: guaranteed results for data fusion and source
reliability[C]//Proceedings of the 2017 ACM International Conference on Management of Data. New York, USA: ACM Press,
2017: 1399-1414.
[68] PENG H, ZHANG P F, TANG J Y, et al. Detect-Then-Resolve: enhancing knowledge graph conflict resolution with large
language model[J]. Mathematics, MDPI, 2024, 12(15): 1-15.
[69] SCHOENMACKERS S, DAVIS J, ETZIONI O, et al. Learning first-order horn clauses from web text[C]//Proceedings of the
2010 Conference on Empirical Methods in Natural Language Processing. Cambridge, USA: ACL, 2010: 1088-1098.
[70] GALÁRRAGA L A, TEFLIOUDI C, HOSE K, et al. AMIE: association rule mining under incomplete evidence in ontological
knowledge
bases[C]//Proceedings
of
the
Web. Rio de Janeiro, Brazil: ACM Press, 2013: 413-422.
22nd
International
Conference
World
Wide
[71] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the
28th International Conference on Machine Learning. Bellevue, USA: Omnipress, 2011: 809-816.
[72] NICKEL M, TRESP V, KRIEGEL H P. Factorizing YAGO: scalable machine learning for linked data[C]//Proceedings of the 21st
International Conference on World Wide Web. New York, USA: ACM Press, 2012: 271-280.
[73] WU Y B, ZHU D H, LIAO X W, et al. Knowledge graph reasoning based on paths of tensor factorization[J]. Pattern Recognition
and Artificial Intelligence, 2017, 30(5): 473-480.
[74] TRIVEDI R, DAI H J, WANG Y C, et al. Know-evolve: deep temporal reasoning for dynamic knowledge
graphs[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: JMLR, 2017: 3462-3471.
[75] DASGUPTA S S, RAY S N, TALUKDAR P. HyTE: hyper-plane-based temporally aware knowledge graph
embedding[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium:
ACL, 2018: 2001-2011.
[76] CHEN X L, CHEN M H, SHI W J, et al. Embedding uncertain knowledge graphs[C]//Proceedings of the 33rd AAAI Conference
on Artificial Intelligence. Menlo Park, USA: AAAI Press, 2019: 3363-3370.
[77] BORDES A, GLOROT X, WESTON J, et al. A semantic matching energy function for learning with multi-relational data[J].Machine Learning, 2014, 94(2): 233-259.
[78] NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[C]//Proceedings of the 30th AAAI
Conference on Artificial Intelligence. Menlo Park, USA: AAAI Press, 2016: 1955-1961.
[79] TROUILLON T, DANCE C R, WELBL J, et al. Knowledge graph completion via complex tensor factorization[J]. Journal of
Machine Learning Research, 2017, 18(1): 4735-4772.
[80] WANG Z G, LI J Z. Text-enhanced representation learning for knowledge graph[C]//Proceedings of the 25th International Joint
Conference on Artificial Intelligence. Menlo Park, USA: AAAI Press, 2016: 1293-1299.
[81] QU M, TANG J. Probabilistic logic neural networks for reasoning[C]//Proceedings of the 33rd Conference on Neural
Information Processing Systems. Red Hook, USA: Curran Associates Inc., 2019: 7712-7722.
[82] ZHANG W, PAUDEL B, WANG L, et al. Iteratively learning embeddings and rules for knowledge graph
reasoning[C]//Proceedings of the 2019 World Wide Web Conference. New York, USA: ACM Press, 2019: 2366-2377.
[83] TAY Y, TUAN L A, PHAN M C, et al. Multi-task neural network for non-discrete attribute prediction in knowledge
graphs[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York, USA: ACM
Press, 2017: 1029-1038.
[84] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the
32nd AAAI Conference on Artificial Intelligence. Menlo Park, USA: AAAI Press, 2018: 1811-1818.
[85] LI S J, CHEN S D, OUYANG X Y, et al. Joint learning based on multi-shaped filters for knowledge graph completion[J]. High
Technology Letters, 2021, 27(1): 43-52.
[86] NEELAKANTAN A, ROTH B, MCCALLUM A. Compositional vector space models for knowledge base
inference[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing. Beijing, China: ACL, 2015: 156-166.
[87] GUO L B, ZHANG Q H, GE W Y, et al. DSKG: a deep sequential model for knowledge graph completion[C]//Proceedings of
2018 China Conference on Knowledge Graph and Semantic Computing. Berlin, Germany: Springer, 2018: 65-77.
[88] LI Z X, JIN X L, GUAN S, et al. Path reasoning over knowledge graph: a multi-agent and reinforcement learning based
method[C]//Proceedings of the 2018 IEEE International Conference on Data Mining Workshops. Washington D. C., USA: IEEE
Press, 2018: 929-936.
[89] WANG Q, JI Y D, HAO Y S, et al. GRL: knowledge graph completion with GAN-based reinforcement learning[J].
Knowledge-Based Systems, 2020, 209: 106421.
[90] TIWARI P, ZHU H, PANDEY H M. DAPath: distance-aware knowledge graph reasoning based on deep reinforcement
learning[J]. Neural Networks, 2021, 135: 1-12.
[91] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional
networks[C]//Proceedings of the 15th International Conference on the Semantic Web. Berlin, Germany: Springer, 2018:
593-607.
[92] BANSAL T, JUAN D C, RAVI S, et al. A2N: attending to neighbors for knowledge graph inference[C]//Proceedings of the 57th
Conference of the Association for Computational Linguistics. Florence, Italy: ACL, 2019: 4387-4392.
[93] TERU K K, DENIS E G, HAMILTON W L. Inductive relation prediction by subgraph reasoning[C]//Proceedings of the 37th
International Conference on Machine Learning. New York, USA: PMLR, 2020: 9448-9457.
[94] ZHU L, ZHAO W J, BAI L Y, et al. Quadruple mention text-enhanced temporal knowledge graph reasoning[J]. Engineering
Applications of Artificial Intelligence, 2024, 133(PA): 108058.
[95] CHANG H, YE J N, AVILA A L, et al. Path-based explanation for knowledge graph completion[C]//Proceedings of the 30th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Barcelona, Spain: ACM Press, 2024:
231-242.
[96] CAO S F, LI X D, GONG Z Z, et al. Multiple concepts and cross-attention based knowledge graph completion[J].
Knowledge-Based Systems, 2025, 55: 851.
|