[1] 闫留浩,袁锁中.无人机空中回收视觉导航技术[J].兵工自动化,2022,41(12):56-60.
YAN L H,YUAN S Z. Vision Navigation Technology for UAV Aerial Recovery[J]. Ordnance Industry Automation, 2022, 41(12):56-60.
[2] 王辉,贾自凯,金忍,等.无人机视觉引导对接过程中的协同目标检测[J].航空学报,2022,43(01):488-502.
WANG H,JIA Z K,JIN R, et al. Cooperative object detection in UAV-based vision-guided docking[J]. Acta Aeronautica et Astronautica Sinica,2022,43(01):488-502.
[3] 刘爱超,佘浩平,杨钦宁,等.无人机空中对接中的视觉导航方法[J].导航定位与授时,2019,6(01):28-34.
LIU A C,SHE H P,YANG Q N, et al. Visual Navigation Method in Drone Aerial Docking[J]. Navigation Positioning and Timing, 2019, 6(01):28-34.
[4] 付一方,胡欣悦,黄与陆,等.基于双目视觉的无人机自主空中对接系统设计[J].航空学报,2023,44(20):58-75.
FU Y F,HU X Y,HUANG Y L, et al. A binocular vision-based autonomous aerial docking system design for UAVs[J]. Acta Aeronautica et Astronautica Sinica,2023, 44(20):58-75.
[5] 黄远潭,任锦瑞,刘润潇,等.基于深度神经网络的自适应图像伺服空中对接控制[J].飞行力学,2025,43(01):63-71.
HUANG Y T,REN J R,LIU R X, et al. Adaptive image-based visual servo aerial docking control based on deep neural network[J]. Flight Dynamics, 2025, 43(01):63-71.
[6] 姚垚,李军府,胡志勇,等.结合机器学习的无人机自主对接过程的目标识别定位[J].电讯技术, 2024, 64(09): 1379-1385.
YAO Y,LI J F,HU Z Y, et al. Target Recognition and Positioning of UAV Autonomous Docking Process Combined with Machine Learning [J]. Telecommunication Engineering,2024,64(09):1379-1385.
[7] Zhang Z, Xu Y, Song J, et al. Planet craters detection based on unsupervised domain adaptation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59 (5):7140-7152.
[8] Xu X, Duan H, Guo Y, et al. A cascade adaboost and cnn algorithm for drogue detection in uav autonomous aerial refueling[J]. Neurocomputing, 2020, 408: 121-134.
[9] Zhai M, HuS,XiaoD,et al. Anefficient drogue detection algorithm for unmanned aerial vehicle autonomous refueling docking phase[J]. Aerospace, 2024, 11(9): 772.
[10] 李毅,徐慧英,朱信忠,等.基于YOLOv5n模型改进的口罩检测算法Mask-YOLO[J].计算机工程,2025, 51(06):297-310.
Mask-YOLO: Improved Mask Detection Algorithm Based on YOLOv5n. [J]. Computer Engineering, 2025,51(06):297-310.
[11] 刘泽,宋廷伦,石先让,等.基于改进RT-DETR的路面异常检测技术研究[J/OL].计算机工程,1-14.
Research on Pavement Anomaly Detection Technology Based on Improved RT-DETR. [J/OL]. Computer Engineering,1-14.
[12] 赵子琪,李卫东,李晓娟.基于改进实时Transformer的航拍图像小目标检测算法[J].科学技术与工程, 2025, 25(13):5527-5534.v
ZHAO Z Q,LI W D,LI X J. Small Target Detection Algorithm in Aerial Images Based on Improved RT-DETR[J]. Science Technology and Engineering, 2025,25(13):5527-5534.
[13] 韩玉兰,陈德澳,吴桐,等.适合边缘设备部署的红外交通目标检测网络[J].光学学报,2025,45(09):122-132
HAN Y L,CHEN D A,WU T, et al. Infrared Traffic Object Detection Network for Edge Device Deployment [J]. Acta Optica Sinica,2025,45(09):122-132
[14] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//European conference on computer vision. Cham: Springer International Publishing, 2020: 213-229.
[15] Zhu X, Su W, Lu L, et al. Deformable DETR: Deformable transformers for end-to-end object detection[J]. arXiv preprint arXiv:2010.04159, 2020.
[16] Meng D, Chen X, Fan Z, et al. Conditional DETR for fast training convergence[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 3651-3660.
[17] Liu S, Li F, Zhang H, et al. Dab-DETR: Dynamic anchor boxes are better queries for DETR[J]. arXiv preprint arXiv:2201.12329, 2022.
[18] Yao Z, Ai J, Li B, et al. Efficient DETR: improving end-to-end object detector with dense prior[J]. arXiv preprint arXiv:2104.01318, 2021.
[19] Wang Y, Zhang X, Yang T, et al. Anchor DETR: Query design for transformer-based detector[C]//Proceedings of the AAAI conference on artificial intelligence. 2022, 36(3): 2567-2575.
[20] Zhao Y, Lv W, Xu S, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024: 16965-16974.
[21] 刘春鑫,白童,王健.RT- DETR- MAR军用飞机遥感图像识别研究[J].航空计算技术,2025,55(03):103-107+113. DING C X, BAI T, WANG J. RT- DETR- MAR Military Aircraft Remote Sensing Image Recognition Research [J]. Aeronautical Computing Technique,2025,55(03):103-107+113.
[22] 芦碧波,姚康为,冯伟华.改进RT-DETR无人机航拍小目标检测算法[J/OL].电光与控制,1-8[2025-10-10].
LU B B, YAO K W, FENG W H. Improved RT-DETR Algorithm for Small Object Detection in UAV Aerial Imagery[J/OL]. Electronics Optics & Control, 1-8[2025-10-10].
[23] 刘泽,宋廷伦,石先让,等.基于改进RT-DETR的路面异常检测技术研究[J/OL].计算机工程,1-14[2025-10-10].
LIU Z, SONG T L, SHI X R, et al. Research on Pavement Anomaly Detection Technology Based on Improved RT-DETR [J/OL]. Computer Engineering,1-14[2025-10-10].
[24] Ding X, Zhang X, Ma N, et al. Repvgg: Making vgg-style convnets great again[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 13733-13742.
[25] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 10012-10022.
[26] Dong X, Bao J, Chen D, et al. Cswin transformer: A general vision transformer backbone with cross-shaped windows[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 12124-12134.
[27] Lyu C, Zhang W, Huang H, et al. Rtmdet: An empirical study of designing real-time object detectors[J]. arXiv preprint arXiv:2212.07784, 2022.
[28] TERVEN J, CORDOVA-ESPARZA D. A comprehensive review of YOLO architectures in computer vision:from YOLOv1 to YOLOv8 and YOLO-NAS. [EB/OL].(2024-02-07)/[2025-8-15]. https://arxiv.org/abs/2304.00501v7.
[29] Wang C Y, Yeh I H, Mark Liao H Y. YOLOv9: Learning what you want to learn using programmable gradient information[C]//European conference on computer vision. Cham: Springer Nature Switzerland, 2024: 1-21.
[30] Khanam R, Hussain M. YOLOv11: An overview of the key architectural enhancements[J]. [EB/OL].(2024-02-07)/[2025-8-15]. https://arxiv.org/abs/2304.00501.
[31] Lv W, Zhao Y, Chang Q, et al. Rt-detrv2: Improved baseline with bag-of-freebies for real-time detection transformer[J]. arXiv preprint arXiv:2407.17140, 2024.
|