[1]LENG J, SHA W, WANG B, et al. Industry 5.0: Prospect and retrospect[J]. Journal of Manufacturing Systems, 2022, 65: 279-295.[1] 60668-60680.
[2]Minh Q N, Nguyen V H, Quy V K, et al. Edge computing for IoT-enabled smart grid: The future of energy[J]. Ener-gies, 2022, 15(17): 6140.
[3]OMITAOMU O A, NIU H. Artificial intelligence tech-niques in smart grid: A survey[J]. Smart Cities, 2021, 4(2): 548-568.
[4]SU Z, WANG Y, LUAN T H, et al. Secure and efficient federated learning for smart grid with edge-cloud collabo-ration[J]. IEEE Transactions on Industrial Informatics, 2021, 18(2): 1333-1344.
[5]SHEN J, CHENG N, WANG X, et al. Ringsfl: An adaptive split federated learning towards taming client heterogene-ity[J]. IEEE Transactions on Mobile Computing, 2023, 23(5): 5462-5478.
[6]FEKRI M N, PATEL H, GROLINGER K, et al. Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network[J]. Applied Energy, 2021, 282: 116177.
[7]WEN J, ZHANG Z, LAN Y, et al. A survey on federated learning: challenges and applications[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(2): 513-535.
[8]宋华伟,李升起,万方杰,等.非独立同分布场景下的联邦学习优化方法[J].计算机工程,2024,50(03):166-172.
SONG H W,LI S Q,WAN F J,et al.Federated Learning Op-timization Method in Non-IID Scenarios[J]. Computer Engineering, 2024,50(03):166-172.
[9]何泽平,许建,戴华,等.联邦学习应用技术研究综述[J].信息网络安全,2024,24(12):1831-1844.
HE Z P,XU J,DAI H, et al. A review of federated learning application technologies[J]. Netinfo Se-curty,2024,24(12):1831-1844 (in Chinese).
[10]韩沛秀,孙卓,刘忠波,等.基于个性化联邦学习的异构船舶航行油耗预测[J].计算机集成制造系统,2025,31(01):182-196.
HAN P X,SUN Z,LIU Z B, et al. Heterogeneous ship fuel oil consumption prediction at sea based on personalized federated learning [J]. Computer Integrated Manufacturing Systems,2025,31(01):182-19 (in Chinese).
[11]THAPA C, ARACHCHIGE P C M, CAMTEPE S, et al. Splitfed: When federated learning meets split learn-ing[C]//Proceedings of the AAAI conference on artificial intelligence. Menlo Park, CA: AAAI ,2022, 8485-8493.
[12]LIAO Y, XU Y, XU H, et al. Mergesfl: Split federated learning with feature merging and batch size regula-tion[C]//2024 IEEE 40th International Conference on Data Engineering (ICDE). Piscataway,NJ: IEEE, 2024: 2054-2067.
[13]HU X, PAPPAS N, YANG H H. Version age-based client scheduling policy for federated learning[C]//2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW). Piscataway,NJ :IEEE, 2024: 695-699.
[14]ZAFAR M H, BUKHARI S M S, Abou Houran M, et al. Step towards secure and reliable smart grids in Industry 5.0: A federated learning assisted hybrid deep learning model for electricity theft detection using smart meters[J]. Energy Reports, 2023, 10: 3001-3019.
[15]MAZHAR T, SHAHZAD T, REHMAN A U, et al. Inte-gration of smart grid with industry 5.0: applications, chal-lenges and solutions[J]. Measurement: Energy, 2025, 5: 100031.
[16]LI Y, YU C, SHAHIDEHPOUR M, et al. Deep reinforce-ment learning for smart grid operations: Algorithms, ap-plications, and prospects[J]. Proceedings of the IEEE, 2023, 111(9): 1055-1096.
[17]RAGHUNANDAN K. Supervisory Control and Data Ac-quisition (SCADA)[M]//Introduction to Wireless Commu-nications and Networks: A Practical Perspective. Cham: Springer International Publishing, 2022: 321-337.
[18]ARIF S, KHAN M A, REHMAN S U. Wireless channel estimation for low-power IoT devices using real-time da-ta[J]. IEEE Access, 2024, 12: 17895-17914.
[19]SHOAIB M, HUSNAIN G, SAYDE N, et al. Unveiling the 5G frontier: Navigating challenges, applications, and measurements in channel models and implementations[J]. IEEE Access, 2024, 12: 59533-59560.
[20]XIE Z, SONG S. FedKL: Tackling data heterogeneity in federated reinforcement learning by penalizing KL diver-gence[J]. IEEE Journal on Selected Areas in Communica-tions, 2023, 41(4): 1227-1242.
[21]RYU M, KIM Y, KIM K, et al. APPFL: open-source soft-ware framework for privacy-preserving federated learn-ing[C]//2022 IEEE international parallel and distributed processing symposium workshops (IPDPSW). Pisca-taway,NJ :IEEE, 2022: 1074-1083.
[22]Z. Ma, Y. Xu, H. Xu, Z. Meng, L. Huang and Y. Xue, "Adaptive Batch Size for Federated Learning in Re-source-Constrained Edge Computing," in IEEE Transac-tions on Mobile Computing, vol. 22, no. 1, pp. 37-53, 1 Jan. 2023.
[23]LUO Y, LIU X, XIU J. Energy-efficient clustering to ad-dress data heterogeneity in federated learning[C]//ICC 2021-IEEE International Conference on Communications. Piscataway,NJ: IEEE, 2021: 1-6.
[24]Al-JOHANY N A, EASSA F E, SHARAF S A, et al. Pre-diction and correction of software defects in mes-sage-passing interfaces using a static analysis tool and machine learning[J]. IEEE Access, 2023, 11:
60668-60680.
[25]B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-efficient learning of deep networks from decentralized data," in Artificial intelligence and statistics. PMLR, 2017, pp. 1273– 1282.
[26]OH S, PARK J, VEPAKOMMA P, et al. Locfedmix-sl: Localize, federate, and mix for improved scalability, con-vergence, and latency in split learning[C]//Proceedings of the ACM Web Conference 2022. New York, NY :ACM,2022: 3347-3357.
[27]X. Wang, Y. Xu, H. Xu, Z. Sun, Y. Liao and J. Qi, "Accel-erating Hierarchical Federated Learning with Model Split-ting in Edge Computing," 2024 IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS), Belgrade, Serbia, 2024, pp. 270-277
[28]REGUIEG H, El H M, El K M, et al. A comparative eval-uation of fedavg and per-fedavg algorithms for dirichlet distributed heterogeneous data[C]//2023 10th International Conference on Wireless Networks and Mobile Communi-cations (WINCOM). Piscataway,NJ :IEEE, 2023: 1-6.
|