[1]. Ivanovski K, Hailemariam A, Smyth R. The effect of renewable and non-renewable energy consumption on economic growth: Non-parametric evidence[J]. Journal of Cleaner Production, 2021, 286: 124956.
[2]. Mdallal A, Yasin A, Mahmoud M, et al. A comprehensive review on solar photovoltaics: Navigating generational shifts, innovations, and sustainability[J]. Sustainable Horizons, 2025, 13: 100137.
[3]. Asghar R, Fulginei F R, Quercio M, et al. Artificial neural networks for photovoltaic power forecasting: a review of five promising models[J]. IEEE Access, 2024.
[4]. Das U K, Tey K S, Seyedmahmoudian M, et al. Forecasting of photovoltaic power generation and model optimization: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 912-928.
[5]. Alsharif M H, Younes M K, Kim J. Time series ARIMA model for prediction of daily and monthly average global solar radiation: The case study of Seoul, South Korea[J]. Symmetry, 2019, 11(2): 240.
[6]. 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al. Recent Progress of Short-Term Forecasting of Photovoltaic Generation Based on Artificial Neural Networks[J]. Acta Energiae Solaris Sinica,2022,43(12):88-97. (in Chinese)
[7]. 朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(08): 3027-3048.
ZHU Q F, LI J T, QIAO J, et al. Application and Prospect of Artificial Intelligence Technology in Renewable Energy Forecasting [J]. Proceedings of the CSEE, 2023, 43(08): 3027-3048. (in Chinese)
[8]. Yu J, Li X, Yang L, et al. Deep learning models for PV power forecasting[J]. Energies, 2024, 17(16): 3973.
[9]. Husein M, Gago E J, Hasan B, et al. Towards energy efficiency: A comprehensive review of deep learning-based photovoltaic power forecasting strategies[J]. Heliyon, 2024, 10(13).
[10]. Sarker I H. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions[J]. SN computer science, 2021, 2(6): 1-20.
[11]. Li Z, Liu F, Yang W, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE transactions on neural networks and learning systems, 2021, 33(12): 6999-7019.
[12]. Albawi S, Mohammed T A, Al-Zawi S. Understanding of a convolutional neural network[J] 2017 International Conference on Engineering and Technology (ICET), 2017: 1-6.
[13]. Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011: 315-323.
[14]. Sun Y, Szűcs G, Brandt A R. Solar PV output prediction from video streams using convolutional neural networks[J]. Energy & Environmental Science, 2018, 11(7): 1811-1818.
[15]. Zang H, Cheng L, Ding T, et al. Hybrid method for short‐term photovoltaic power forecasting based on deep convolutional neural network[J]. IET Generation, Transmission & Distribution, 2018, 12(20): 4557-4567.
[16]. Jeong J, Kim H. Multi-site photovoltaic forecasting exploiting space-time convolutional neural network[J]. Energies, 2019, 12(23): 4490.
[17]. Zang H, Cheng L, Ding T, et al. Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning[J]. International Journal of Electrical Power & Energy Systems, 2020, 118: 105790.
[18]. Huang Q, Wei S. Improved quantile convolutional neural network with two-stage training for daily-ahead probabilistic forecasting of photovoltaic power[J]. Energy conversion and management, 2020, 220: 113085.
[19]. Aprillia H, Yang H T, Huang C M. Short-term photovoltaic power forecasting using a convolutional neural network–salp swarm algorithm[J]. Energies, 2020, 13(8): 1879.
[20]. Lin Y, Koprinska I, Rana M. Temporal convolutional neural networks for solar power forecasting[C]//2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020: 1-8.
[21]. 邢晨, 张照贝. 基于改进时间卷积网络的短期光伏出力概率预测方法[J]. 太阳能学报, 2023, 44(02): 373-380.
XING C, ZHANG Z B. Short-term photovoltaic output probability prediction method based on improved temporal convolutional network[J]. Acta Energiae Solaris Sinica, 2023, 44(02): 373-380. (in Chinese)
[22]. 庞昊, 高金峰, 杜耀恒. 基于时间卷积网络分位数回归的短期负荷概率密度预测方法[J]. 电网技术, 2020, 44(04): 1343-1350.
PANG H, GAO J F, DU Y H. A Short-term Load Probability Density Prediction Based on Quantile Regression of Time Convolution Network[J]. Power System Technology, 2020, 44(04): 1343-1350. (in Chinese)
[23]. 陈禹帆, 温蜜, 张凯, 等. 基于相似日匹配及TCN-Attention的短期光伏出力预测[J]. 电测与仪表, 2022, 59(10): 108-116.
CHEN Y F, WEN M, ZHANG K, et al. Short-term photovoltaic output forecasting based on similar day matching and TCN-Attention[J]. Electrical Measurement & Instrumentation, 2022,59(10): 108-116. (in Chinese)
[24]. 王舒雨, 李豪, 马刚, 等. 基于TCN和DLinear的光伏发电功率多步预测模型[J]. 电力建设, 2025, 46(4): 173-184.
WANG S Y, LI H, MA G, et al. Multistep Prediction Model for Photovoltaic Power Generation Based on Time Convolution and DLinear[J]. Electric Power Construction, 2025, 46(4): 173-184. (in Chinese)
[25]. Al-Dahidi S, Alahmer H, Rinchi B, et al. Multistep PV Power Forecasting Using Deep Learning Models and the Reptile Search Algorithm[J]. Results in Engineering, 2025: 106265.
[26]. Buz T. Comparing RNN and CNN models on invoice extraction: LSTM vs GRU vs TCN[J]. Hypatos_Insights, 2019.
[27]. Sutskever I, Martens J, Hinton G E. Generating text with recurrent neural networks[C]//Proceedings of the 28th international conference on machine learning (ICML-11). 2011: 1017-1024.
[28]. Graves A, Graves A. Long short-term memory[J]. Supervised sequence labelling with recurrent neural networks, 2012: 37-45.
[29]. Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv:1412.3555, 2014.
[30]. 宋绍剑, 李博涵. 基于LSTM网络的光伏发电功率短期预测方法的研究[J]. 可再生能源, 2021, 39(5): 594-602.
SONG S J, LI B H. Research on Short-Term Prediction Method of Photovoltaic Power Generation based on LSTM network[J], RenewabIe Energy ResOurces, 2021, 39(5): 594-602. (in Chinese)
[31]. Wang L, Liu Y, Li T, et al. Short-term PV power prediction based on optimized VMD and LSTM[J]. IEEE access, 2020, 8: 165849-165862.
[32]. 杨晶显, 张帅, 刘继春, 等. 基于VMD和双重注意力机制LSTM的短期光伏功率预测[J]. 电力系统自动化, 2021, 45(3): 174-182.
YANG J X, ZHANG S, LIU J C, et al. Short-term Photovoltaic Power Prediction Based on Variational Mode Decomposition and Long Shortterm Memory with Dual-stage Attention Mechanism[J]. Automation of Electric Power Systems, 2021, 45(3): 174-182. (in Chinese)
[33]. Zhou H, Zhang Y, Yang L, et al. Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism[J]. Ieee Access, 2019, 7: 78063-78074.
[34]. Ma H, Zhang C, Peng T, et al. An integrated framework of gated recurrent unit based on improved sine cosine algorithm for photovoltaic power forecasting[J]. Energy, 2022, 256: 124650.
[35]. 焦丕华, 蔡旭, 王乐乐, 等. 考虑数据分解和进化捕食策略的BiLSTM短期光伏发电功率预测[J]. 太阳能学报, 2024, 45(2): 435-442.
JIAO P H , CAI X, WANG L L, et al., BiLSTM short-term photovoltaic power prediction considering data decomposition and evolutionary predation[J]. Acta Energiae Solaris Sinica, 2024, 45(2): 435-442. (in Chinese)
[36]. Hossain M S, Mahmood H. Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast[J]. Ieee Access, 2020, 8: 172524-172533.
[37]. Wang H, Yan S, Ju D, et al. Short-term photovoltaic power forecasting based on a feature rise-dimensional two-layer ensemble learning model[J]. Sustainability, 2023, 15(21): 15594.
[38]. 刘振路, 郭军红, 李薇, 等. 基于FCM-LSTM的光热发电出力短期预测[J]. 工程科学学报, 2024, 46(1): 178-186.
LIU Z L, GUO J H, LI W, et al. Short-term prediction of concentrating solar power based on FCM–LSTM[J]. Chinese Journal of Engineering, 2024, 46(1): 178-186. (in Chinese)
[39]. 高寒旭, 袁祖晴, 张淑婷, 等. 基于LSTM模型的短期光伏功率预测[J]. 太阳能学报, 2024, 45(6): 376-381.
GAO H X, YUAN Z Q, ZHANG S T, et al. Short-term photovoltaic power prediction based on LSTM model[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 376-381. (in Chinese)
[40]. Mellit A, Pavan A M, Lughi V. Deep learning neural networks for short-term photovoltaic power forecasting[J]. Renewable Energy, 2021, 172: 276-288.
[41]. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[42]. Phan Q T, Wu Y K, Phan Q D. An approach using transformer-based model for short-term PV generation forecasting[C]//2022 8th International Conference on Applied System Innovation (ICASI). IEEE, 2022: 17-20.
[43]. Cao H, Yang J, Zhao X, et al. Dual-encoder transformer for short-term photovoltaic power prediction using satellite remote-sensing data[J]. Applied Sciences, 2023, 13(3): 1908.
[44]. Huang Y, Wu Y. Short-term photovoltaic power forecasting based on a novel autoformer model[J]. Symmetry, 2023, 15(1): 238.
[45]. 王光华, 张纪欣, 崔良, 等. 基于双重注意力变换模型的分布式屋顶光伏变电站级日前功率预测[J]. 全球能源互联网, 2024, 7(4): 393-405.
WANG G H, ZHANG J X, CUI L, et al. Substation-level Distributed Rooftop Photovoltaic Power Day-ahead Prediction Based on Double Attention Mechanism Transformer Model[J], Journal of Global Energy Interconnection, 2024, 7(4): 393-405. (in Chinese)
[46]. Tang H, Kang F, Li X, et al. Short-term photovoltaic power prediction model based on feature construction and improved transformer[J]. Energy, 2025, 320: 135213.
[47]. 王瑞, 靳鑫鑫, 逯静. SVMD-PE-BP-Transformer短期光伏功率预测[J]. 电网与清洁能源, 2024, 40(8): 141-150.
WANG R, JIN X X, LU J. SVMD-PE-BP-Transformer Short-Term PV Power Prediction[J], Power System and Clean Energy, 2024, 40(8): 141-150. (in Chinese)
[48]. Wang K, Shan S, Dou W, et al. A cross-modal deep learning method for enhancing photovoltaic power forecasting with satellite imagery and time series data[J]. Energy Conversion and Management, 2025, 323: 119218.
[49]. Boussif O, Boukachab G, Assouline D, et al. Improving day-ahead solar irradiance time series forecasting by leveraging spatio-temporal context[J]. Advances in Neural Information Processing Systems, 2023, 36: 2342-2367.
[50]. Chen C F R, Fan Q, Panda R. Crossvit: Cross-attention multi-scale vision transformer for image classification[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 357-366.
[51]. Radford A, Wu J, Child R, et al. Language models are unsupervised multitask learners[J]. OpenAI blog, 2019, 1(8): 9.
[52]. Brown T, Mann B, Ryder N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-1901.
[53]. Yan Z, Zhenyuan D, Xu Y, et al. Probabilistic PV power forecasting by a multi-modal method using GPT-agent to interpret weather conditions[C]//2024 IEEE 19th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2024: 1-6.
[54]. Kim J, Obregon J, Park H, et al. Multi-step photovoltaic power forecasting using transformer and recurrent neural networks[J]. Renewable and Sustainable Energy Reviews, 2024, 200: 114479.
[55]. Yuan L, Wang X, Sun Y, et al. Multistep photovoltaic power forecasting based on multi-timescale fluctuation aggregation attention mechanism and contrastive learning[J]. International Journal of Electrical Power & Energy Systems, 2025, 164: 110389.
[56]. 胡烜彬, 纪正森, 许晓敏. DPCA-POA-RF-Informer在多情景光伏多步预测中的应用[J]. 智慧电力, 2024, 52(01): 8-13+22.
HU X B, JI Z S, XU X M. Application of DPCA-POA-RF-Informer in Multi-scenario Multi-step Prediction of Photovoltaic Power[J]. Smart Power,2024,52(01):8-13+22. (in Chinese)
[57]. Kipf T N. Semi-Supervised Classification with Graph Convolutional Networks[J]. International Conference on Learning Representations, 2017.
[58]. Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J]. International Conference on Learning Representations, 2017.
[59]. Cheng L, Zang H, Ding T, et al. Multi-meteorological-factor-based graph modeling for photovoltaic power forecasting[J]. IEEE Transactions on Sustainable Energy, 2021, 12(3): 1593-1603.
[60]. Zhang M, Zhen Z, Liu N, et al. Optimal graph structure based short-term solar PV power forecasting method considering surrounding spatio-temporal correlations[J]. IEEE transactions on industry applications, 2022, 59(1): 345-357.
[61]. 张亮, 周立洋, 徐晓春, 等. 一种基于GCN的光伏短期出力预测方法研究[J]. 太阳能学报, 2024, 45(08): 289-294.
ZHANG L, ZHOU L Y, XU X C, et al. Research on short-term pv output prediction method based on GCN[J]. Acta Energiae Solaris Sinica, 2024, 45(08): 289-294. (in Chinese)
[62]. Yang Y, Liu Y, Zhang Y, et al. DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting[J]. Applied Energy, 2025, 378: 124744.
[63]. Verdone A, Scardapane S, Panella M. Explainable spatio-temporal graph neural networks for multi-site photovoltaic energy production[J]. Applied Energy, 2024, 353: 122151.
[64]. Zhen Z, Yang Y, Wang F, et al. PV power forecasting method using a dynamic spatio-temporal attention graph convolutional network with error correction[J]. Solar Energy, 2025, 300: 113770.
[65]. Liu J, Li T. Multi-step power forecasting for regional photovoltaic plants based on ITDE-GAT model[J]. Energy, 2024, 293: 130468.
[66]. Sima Q, Zhang X, Yang S, et al. Multi-scale fused Graph Convolutional Network for multi-site photovoltaic power forecasting[J]. Energy Conversion and Management, 2025, 333: 119773.
[67]. Simeunović J, Schubnel B, Alet P J, et al. Interpretable temporal-spatial graph attention network for multi-site PV power forecasting[J]. Applied Energy, 2022, 327: 120127.
[68]. 吴家葆, 曾国辉, 张振华, 等. 基于K-means分层聚类的TCN-GRU和LSTM动态组合光伏短期功率预测[J]. 可再生能源, 2023, 41(8): 1015-1022.
WU J B, ZENG G H, ZHANG Z H, et al. Dynamic combination of TCN-GRU and LSTM photovoltaic short-term power prediction based on K-means hierarchical clustering[J]. Renewable Energy Resources, 2023, 41(8): 1015-1022. (in Chinese)
[69]. Thipwangmek N, Suetrong N, Taparugssanagorn A, et al. Enhancing short-term solar photovoltaic power forecasting using a hybrid deep learning approach[J]. IEEE Access, 2024.
[70]. Ibrahim M S, Gharghory S M, Kamal H A. A hybrid model of CNN and LSTM autoencoder-based short-term PV power generation forecasting[J]. Electrical Engineering, 2024, 106(4): 4239-4255.
[71]. Dai Y, Wang Y, Leng M, et al. Short-Term Photovoltaic Power Generation Forecasting with Lowess Smoothing, Feature Selection, and Optimized Bigru[J]. Feature Selection, and Optimized Bigru, 2023.
[72]. 杨建, 常学军, 姚帅, 等. 基于WT-CNN-BiLSTM模型的日前光伏功率预测[J]. 南方电网技术, 2024, 18(8): 61-69, 79.
YANG J, CHANG X J, YAO S, et al. Day-Ahead Photovoltaic Power Forecasting Based on WT-CNN-BiLSTM Model[J]. Southern Power System Technology, 2024, 18(8): 61-69, 79. (in Chinese)
[73]. 姜建国, 杨效岩, 毕洪波. 基于VMD-FE-CNN-BiLSTM的短期光伏发电功率预测[J]. 太阳能学报, 2024, 45(07): 462-473.
JIANG J G, YANG X Y, BI H B. Photovoltaic power forecasting method based on VMD-FE-CNN-BiLSTM[J]. Acta Energiae Solaris Sinica, 2024, 45(07): 462-473. (in Chinese)
[74]. Guo F, Yang C, Xia D, et al. Short-Term Prediction of Photovoltaic Power Based on Improved CNN-LSTM and Cascading Learning[J]. Energy Engineering, 2025, 122(5): 1975-1999.
[75]. 龙小慧, 秦际赟, 张青雷, 等. 基于相似日聚类及模态分解的短期光伏发电功率组合预测研究[J]. 电网技术, 2024, 48(7): 2948-2957.
LONG X H, QIN J Y, ZHANG Q L, et al. Short-term Photovoltaic Power Prediction Study Based on Similar Day Clustering and Modal Decomposition[J]. Power System Technology, 2024, 48(7): 2948-2957. (in Chinese)
[76]. 杨轶航, 韩璐, 史华勃, 等. 基于相似日与ISC-BiLSTM的短期光伏功率预测方法[J]. 太阳能学报, 2025, 46(1): 676-685.
YANG YH, HAN L, SHI H B, et al. Short-term photovoltaic power forecast method based on similar days and ISC-BiLSTM[J]. Acta Energiae Solaris Sinica , 2025, 46(1): 676-685. (in Chinese)
[77]. Nguyen-Duc T, Do-Dinh H, Fujita G, et al. Multi 2D-CNN-based model for short-term PV power forecast embedded with Laplacian Attention[J]. Energy Reports, 2024, 12: 2086-2096.
[78]. Hua X, Zhang Z, Ye T, et al. Enhanced Short-Term Photovoltaic Power Prediction Through Multi-Method Data Processing and SFOA-Optimized CNN-BiLSTM[J]. Energies, 2025, 18(19): 5124.
[79]. 陈殿昊, 臧海祥, 刘璟璇, 等. 基于多视角特征提取与多任务学习的光伏功率多步预测[J]. 高电压技术, 2024, 50(09): 3924-3933.
CHEN D H, ZANG H X, LIU J X, et al. Multi-step Prediction of Photovoltaic Power Based on Multi-view Features Extraction and Multi-task Learning[J]. High Voltage Engineering,2024,50(09):3924-3933. (in Chinese)
[80]. 张永宁. 多时间尺度光伏功率预测研究及不确定性分析[D]. 内蒙古科技大学, 2025.
ZHANG Y N. Multi-timescale photovoltaic power forecasting techniques and uncertainty analysis convolutional[D]. Inner Mongolia University of Science and Technology,2025. (in Chinese)
[81]. 盛瑞祥, 张啸宇. 基于概率TCN-Transformer的短期光伏功率预测模型[J]. 综合智慧能源, 2024, 46(11): 10-18.
SHENG R X, ZHANG X Y. Photovoltaic power forecasting model based on probabilistic TCN-Transformer[J]. Integrated Intelligent Energy, 2024, 46(11): 10-18. (in Chinese)
[82]. 张红, 李峰, 马彦宏, 等. PAM结合TCN优化Transformer的光伏功率预测研究[J/OL]. 计算机工程, 1-8.
ZHANG H, LI F, MA Y H, et al. Research on photovoltaic power prediction of PAM combined with TCN optimized Transformer[J/OL]. Computer Engineering, 1-8. (in Chinese)
[83]. López Santos M, García-Santiago X, Echevarría Camarero F, et al. Application of temporal fusion transformer for day-ahead PV power forecasting[J]. Energies, 2022, 15(14): 5232.
[84]. 董俊, 刘瑞, 束洪春, 等. 基于BIRCH聚类的L-Transformer分布式光伏短期发电功率预测[J]. 高电压技术, 2024, 50(9): 3883-3893.
DONG J, LIU R, SU H C, et al. Short-term Distributed Photovoltaic Power Generation Prediction Based on BIRCH Clustering and L-Transformer[J]. High Voltage Engineering, 2024, 50(9): 3883-3893. (in Chinese)
[85]. 刘世鹏, 宁德军, 马崛. 针对光伏发电功率预测的LSTformer模型[J]. 计算机工程与应用, 2024, 60(9): 317-325.
LIU S P, NING D J, MA J. LSTformer Model for Photovoltaic Power Prediction[J]. Computer Engineering and Applications, 2024, 60(9): 317-325. (in Chinese)
[86]. 殷林飞, 张依玲. 基于多重卷积组合大模型的光伏出力预测[J]. 综合智慧能源, 2025, 47(04): 63-72.
YIN L F, ZHANG Y L. Photovoltaic output prediction based on multi-convolutional combined large model[J]. Integrated Intelligent Energy, 2025, 47(04): 63-72. (in Chinese)
[87]. Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers). 2019: 4171-4186.
[88]. Moon J. A multi-step-ahead photovoltaic power forecasting approach using one-dimensional convolutional neural networks and transformer[J]. Electronics, 2024, 13(11): 2007.
[89]. Chen R, Liu G, Cao Y, et al. CGAformer: Multi-scale feature Transformer with MLP architecture for short-term photovoltaic power forecasting[J]. Energy, 2024, 312: 133495.
[90]. Wang Q, Cheng H, Zhang W, et al. Short-Term Photovoltaic Power Prediction Based on Multi-Stage Temporal Fe ature Learning[J]. Energy Engineering: Journal of the Association of Energy Engineers, 2025, 122(2): 747.
[91]. Liu M, Rao S, Huang M, et al. Short-term photovoltaic power forecasting based on improved Transformer with feature enhancement[J]. Sustainable Energy, Grids and Networks, 2025: 101759.
[92]. Feng H, Niu X, Ren M, et al. Short-Term Photovoltaic Power Forecasting Using Multi-timescale Information Based FFTformer Model[C]//International Conference on Life System Modeling and Simulation. Singapore: Springer Nature Singapore, 2024: 79-90.
[93]. 颜俊, 贺伟, 郭创新, 等. 基于生成对抗网络与Transformer的多尺度光伏出力预测[J/OL]. 电力自动化设备, 1-17 [2025-11-08].
YAN JM HE W, GUO C X, et al. Multi-scale photovoltaic power output prediction based on generative adversarial network and Transformer[J/OL]. Electric Power Automation Equipment, 1-17[2025-11-08]. (in Chinese)
[94]. Thanh S T, Do Dinh H, Minh G N H, et al. Spatial-Temporal Graph Hybrid Neural Network for PV Power Forecast[C]//2024 8th International Conference on Green Energy and Applications (ICGEA). IEEE, 2024: 317-322.
[95]. Dang X, Shu X, Li F. Dynamic Graph Attention Meets Multi-Scale Temporal Memory: A Hybrid Framework for Photovoltaic Power Forecasting Under High Renewable Penetration[J]. Processes, 2025, 13(3): 873.
[96]. Simeunović J, Schubnel B, Alet P J, et al. Spatio-temporal graph neural networks for multi-site PV power forecasting[J]. IEEE Transactions on Sustainable Energy, 2021, 13(2): 1210-1220.
[97]. Hessel M, Modayil J, Van Hasselt H, et al. Rainbow: Combining improvements in deep reinforcement learning[C]//Proceedings of the AAAI conference on artificial intelligence. 2018, 32(1).
[98]. Terven J. Deep reinforcement learning: a chronological overview and methods[J]. AI, 2025, 6(3): 46.
[99]. 王剑斌, 傅金波, 陈博. 基于强化学习的多模型融合光伏发电功率预测方法[J]. 太阳能学报, 2024, 45(06): 382-388.
WANG J B, FU J B, CHEN B. Multi-model fusion photovoltaic power generation prediction method based on reinforcement learning[J]. Acta Energiae Solaris Sinica, 2024, 45(06): 382-388. (in Chinese)
[100]. Zhang R, Bu S, Zhou M, et al. Deep reinforcement learning based interpretable photovoltaic power prediction framework[J]. Sustainable Energy Technologies and Assessments, 2024, 67: 103830.
[101]. Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27.
[102]. Ma C, Tschiatschek S, Turner R, et al. Vaem: a deep generative model for heterogeneous mixed type data[J]. Advances in Neural Information Processing Systems, 2020, 33: 11237-11247.
[103]. 雷柯松, 吐松江•卡日, 伊力哈木•亚尔买买提, 等. 基于WGAN-GP和CNN-LSTM-Attention的短期光伏功率预测[J]. 电力系统保护与控制, 2023, 51(9): 108-118.
LEI K S, TUSONGJIANG K R, YILIHAMU Y E M M T, et al. Prediction of short-term photovoltaic power based on WGAN-GP and CNN-LSTM-Attention[J] Power System Protection and Control, 2023, 51(9): 108-118. (in Chinese)
[104]. Lee D S, Son S Y. PV forecasting model development and impact assessment via imputation of missing PV power data[J]. IEEE Access, 2024, 12: 12843-12852.
[105]. 邵欣洋, 杨毅, 鲁一宵. 基于生成对抗网络和NGO-BiLSTM的少样本光伏功率短期预测[J]. 昆明理工大学学报(自然科学版), 2025: 1-12.
SHAO X Y, YANG Y, LU Y X. Short-term Solar Power Prediction with Limited Data Based on Generative Adversarial Networks and NGO-BiLSTM[J]. Journal of Kunming University of Science and Technology (Natural Sciences), 2025: 1-12. (in Chinese)
[106]. Li Q, Zhang X, Ma T, et al. A Multi-step ahead photovoltaic power forecasting model based on TimeGAN, Soft DTW-based K-medoids clustering, and a CNN-GRU hybrid neural network[J]. Energy Reports, 2022, 8: 10346-10362.
[107]. 贺健平, 林永君, 孙孟超, 等.考虑数据缺失的短期光伏功率预测模型[J]. 电力科学与工程, 2024, 40(11): 35-44.
HE JIAN P, LIN Y J, SUN M C, et al. Short-term Photovoltaic Power Prediction Model Considering Data Missing, 2024, 40(11): 35-44. (in Chinese)
[108]. Song K, Kim M, Kim H. Graph-Based Large Scale Probabilistic PV Power Forecasting Insensitive to Space-Time Missing Data[J]. IEEE Transactions on Sustainable Energy, 2024.
[109]. Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2020, 109(1): 43-76.
[110]. Zhou S, Zhou L, Mao M, et al. Transfer learning for photovoltaic power forecasting with long short-term memory neural network[C]//2020 IEEE international conference on big data and smart computing (BigComp). IEEE, 2020: 125-132.
[111]. Luo X, Zhang D, Zhu X. Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants[J]. Renewable energy, 2022, 185: 1062-1077.
[112]. 史凯钰, 张东霞, 韩肖清, 等. 基于LSTM与迁移学习的光伏发电功率预测数字孪生模型[J]. 电网技术, 2022, 46(04): 1363-1372.
SHI K Y, ZHANG D X, HAN X Q, et al. Digital Twin Model of Photovoltaic Power Generation Prediction Based on LSTM and Transfer Learning[J]. Power System Technology, 2022, 46(04): 1363-1372. (in Chinese)
[113]. Ilias L, Sarmas E, Marinakis V, et al. Unsupervised domain adaptation methods for photovoltaic power forecasting[J]. Applied Soft Computing, 2023, 149: 110979.
[114]. 王晓霞, 艾兴成, 王涛. 基于实例迁移学习的小样本光伏功率短期预测[J]. 太阳能学报, 2024, 45(06): 325-333.
WANG X X, AI X C, WANG T. Few-shot photovoltaic power short-term forecasting based on instance transfer learning. [J]. Acta Energiae Solaris Sinica, 2024, 45(06): 325-333. (in Chinese)
[115]. McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Artificial intelligence and statistics. PMLR, 2017: 1273-1282.
[116]. Wang H, Shen H, Li F, et al. Novel PV power hybrid prediction model based on FL Co-Training method[J]. Electronics, 2023, 12(3): 730.
[117]. 韩忠修, 王云鹏. 联邦学习架构下基于LSTM的光伏发电量预测[J]. 自动化应用, 2025, 66(15): 153-157.
HAN Z X, WANG Y P. Photovoltaic Power Generation Prediction Based on LSTM Under Federated Learning Architecture[J]. Automation Application, 2025, 66(15): 153-157. (in Chinese)
[118]. 邓芳明, 吴磊, 王锦波, 等. 场景分类与隐私保护下的分布式光伏功率预测协同训练策略[J]. 太阳能学报, 2025, 46(07): 1-10.
DENG F M, WU L, WANG J B, et al. Collaborative training strategy of distributed pv power prediction under scenario classification and privacy protection[J]. Acta Energiae Solaris Sinica, 2025, 46(07): 1-10. (in Chinese)
[119]. Luo X, Zhang D. An adaptive deep learning framework for day-ahead forecasting of photovoltaic power generation[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102326.
[120]. Min H, Noh B. SolarNexus: A deep learning framework for adaptive photovoltaic power generation forecasting and scalable management[J]. Applied Energy, 2025, 391: 125848.
[121]. Xia Y, Huang H, Zhu J, et al. Achieving cross modal generalization with multimodal unified representation[J]. Advances in Neural Information Processing Systems, 2023, 36: 63529-63541.
[122]. Lee S, Lai B, Ryan F, et al. Modeling multimodal social interactions: new challenges and baselines with densely aligned representations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 14585-14595.
[123]. Gu Y, Dong L, Wei F, et al. MiniLLM: Knowledge Distillation of Large Language Models[C]//The Twelfth International Conference on Learning Representations.
[124]. Yang C, Zhu Y, Lu W, et al. Survey on knowledge distillation for large language models: methods, evaluation, and application[J]. ACM Transactions on Intelligent Systems and Technology, 2024.
[125]. Gendron G. Causal graph modelling with deep neural engines for strong abstract reasoning in language and vision[C]//Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence. 2024: 8490-8491.
[126]. Bajaj M, Chu L, Xue Z Y, et al. Robust counterfactual explanations on graph neural networks[J]. Advances in neural information processing systems, 2021, 34: 5644-5655.
[127]. Wu Y, McConnell L, Iriondo C. Counterfactual Generative Modeling with Variational Causal Inference[C]//The Thirteenth International Conference on Learning Representations.
[128]. Komanduri A. Toward Causal Generative Modeling: From Representation to Generation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2025, 39(28): 29275-29276.
[129]. Bai X, Shang J, Sun Y, et al. Continual learning with global alignment[J]. Advances in Neural Information Processing Systems, 2024, 37: 69976-69998.
[130]. Chen X, Xie S, He K. An empirical study of training self-supervised vision transformers[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 9640-9649.
[131]. He K, Chen X, Xie S, et al. Masked autoencoders are scalable vision learners[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 16000-16009.
[132]. Zhang H, Zhang Y. Memory-efficient reversible spiking neural networks[C]//Proceedings of the AAAI conference on artificial intelligence. 2024, 38(15): 16759-16767.
[133]. Ororbia A G. Contrastive signal–dependent plasticity: Self-supervised learning in spiking neural circuits[J]. Science Advances, 2024, 10(43): eadn6076.
|