[1] 万凤鸣,万华伟,高吉喜,等.高光谱遥感在植物物种多样性监测中的应用与展望[J].环境科学研究,2025,38(01):166-180.DOI:10.13198/j.issn.1001-6929.2024.10.16.
WAN Fengming, WAN Huawei, GAO Jixi, et al. Hyperspectral remote sensing monitoring of the plant species diversity and prospect in application [J]. Journal of environmental science research, 2025, 38 (01) : 166-180. The DOI: 10.13198 / j.i SSN. 1001-6929.2024.10.16.
[2] 董昊锦.智慧城市建设中测绘地理信息的应用[J].科技创新与应用,2025,15(04):193-196.DOI:10.19981/j.CN23 -1581/G3.2025.04.044.
Dong Haojin. Technology Innovation and Application, 2020,15(04):193-196. (in Chinese) DOI:10.19981/ j.CN23 -1581 /G3.2025.04.044.
[3] 马勤,张旭,袁敬毅,等.森林年龄遥感估算和应用研究进展[J].遥感学报,2025,29(01):70-82.
Ma Qin, Zhang Xu, YUAN Jingyi, et al. Research progress of forest age estimation and application based on remote sensing [J]. Journal of Remote Sensing, 2020,29(01):70-82.
[4] Li C, Li L, Jiang H, et al. YOLOv6: A single-stage object detection framework for industrial applications[J]. arXiv preprint arXiv:2209.02976, 2022.
[5] Varghese R, Sambath M. Yolov8: A novel object detection algorithm with enhanced performance and robustness [C]//2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS). IEEE, 2024: 1-6.DOI: 10.1109/ADICS58448.2024.1053 3619
[6] Wang A, Chen H, Liu L, et al. Yolov10: Real-time end-to-end object detection[J]. Advances in Neural Information Processing Systems, 2024, 37: 107984- 108011.
[7] Khanam R, Hussain M. Yolov11: An overview of the key architectural enhancements [EB/OL]. [2024-10-23]. https:// arxiv.org/abs/2410.17725.
[8] Zhang Y, Ye M, Zhu G, et al. FFCA-YOLO for small object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-15.DOI: 10.1109/tgrs.2024.3363057
[9] Zhu X, Lyu S, Wang X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios [C]//Proceedings of the IEEE/CVF international conference on computer vision. IEEE, 2021: 2778-2788.DOI: 10.1109/iccvw 54120.2021. 00312
[10] Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. IEEE, 2020: 10781-10790..DOI:10.1109/cvpr42600.2020. 01079
[11] Li Y, Hou Q, Zheng Z, et al. Large selective kernel network for remote sensing object detection[C]//Proceedings of the IEEE/CVF international conference on computer vision. IEEE, 2023: 16794-16805.DOI:10.1109/ iccv 51070.2023. 01540
[12] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). Springer, 2018: 3-19.10.DOI:1007/978-3-030-01234-2_1
[13] Si Y, Xu H, Zhu X, et al. SCSA: Exploring the synergistic effects between spatial and channel attention[J]. Neurocomputing, 2025, 634: 129866. DOI: 10.1016/ j.neucom.2025.129866.
[14] Tong Z, Chen Y, Xu Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism [EB/OL]. [2023-01-24]. https://arxiv.org/abs/2301. 10051.
[15] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988. DOI : 10.1109/iccv.2017.324
[16] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications [EB/OL]. [2017-04-17]. https:// arxiv.org /abs/1704.04861.
[17] Han K, Wang Y, Tian Q, et al. Ghostnet: More features from cheap operations[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. IEEE, 2020: 1580-1589.DOI:10.1109/cvpr42600.2020. 00165
[18] Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. IEEE, 2019: 658-666.DOI:10.1109/cvpr.2019.00075
[19] Zheng Z, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C] //Proceedings of the AAAI conference on artificial intelligence. AAAI, 2020, 34(07): 12993-13000. DOI: 10.1609/aaai.v34i07.6999
[20] Du D, Zhu P, Wen L, et al. VisDrone-DET2019: The vision meets drone object detection in image challenge results[C] //Proceedings of the IEEE/CVF international conference on computer vision workshops. 2019: DOI: 10.1109 /ICCVW.2019.00012.
[21] Razakarivony S, Jurie F. Vehicle detection in aerial imagery: A small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34: 187-203.DOI:10.1016/j.jvcir.2015.11.002
[22] Wang J, Yang W, Guo H, et al. Tiny object detection in aerial images[C]//2020 25th international conference on pattern recognition (ICPR). IEEE, 2021: 3791-3798. DOI:10.1109/icpr48806.2021.9413340
[23] Pham M T, Courtrai L, Friguet C, et al. YOLO-Fine: One-stage detector of small objects under various backgrounds in remote sensing images[J]. Remote Sensing, 2020, 12(15): 2501. DOI: 10.3390/rs12152501.
[24] Zhang J, Lei J, Xie W, et al. SuperYOLO: Super resolution assisted object detection in multimodal remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15.DOI: 110.1109/tgrs.2023.3258666
[25] Cai Z, Vasconcelos N. Cascade r-cnn: Delving into high quality object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, 2018: 6154-6162.DOI:10.1109/cvpr.2018.00644
[26] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.DOI: 10.1109/ tpami. 2016.2577031
[27] Ge Z, Liu S, Wang F, et al. Yolox: Exceeding yolo series in 2021 [EB/OL]. [2021-07-18]. https://arxiv.org/abs/ 2107. 08430.
[28] Ma M, Pang H. SP-YOLOv8s: An improved YOLOv8s model for remote sensing image tiny object detection[J]. Applied Sciences, 2023, 13(14): 8161. DOI: 10.3390/ app13148161.
[29] Gu Q, Han Z, Kong S, et al. DCYOLO: Dual negative weighting label assignment and cross-layer decouple head for YOLO in remote sensing images[J]. Expert Systems with Applications,Volume 281,2025,127595,ISSN 0957- 4174 ,https://doi.org/10.1016/j.eswa.2025.127595.
[30] Zheng X, Bi J, Li K, et al. SMN-YOLO: Lightweight YOLOv8-Based Model for Small Object Detection in Remote Sensing Images[J]. IEEE Geoscience and Remote Sensing Letters, 2025. DOI: 10.1109/ LGRS. 2025. 3546034.
[31] J. Qiu, F. Cai, N. Fu and Y. Yao, "YOLO-Air: An Efficient Deep Learning Network for Small Object Detection in Drone-Based Imagery," in IEEE Access, vol. 13, pp. 79718-79735, 2025, doi: 10.1109/ACCES S .2025.3565560.
[32] .Li H, Qu H. VMC-Net: multi-scale feature aggregation and distribution with contextual attention guided fusion for aerial object detection[J]. Complex & Intelligent Systems, 2025, 11(8): 350
|