[1] Engidayehu S B, Mahboob T, Chung M Y. Deep reinforcement learning-based task offloading and resource allocation in MEC-enabled wireless networks[C]//2022 27th Asia Pacific Conference on Communications (APCC). IEEE, 2022: 226-230.
[2] Yan J, Bi S, Zhang Y J A. Optimal offloading and resource allocation in mobile-edge computing with inter-user task dependency[C]//2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 2018: 1-8.
[3] Zhang W, Wen Y, Wu J, et al. Toward a unified elastic computing platform for smartphones with cloud support[J]. IEEE Network, 2013, 27(5): 34-40.
[4] Islam A, Debnath A, Ghose M, et al. A survey on task offloading in multi-access edge computing[J]. Journal of Systems Architecture, 2021, 118: 102225.
[5] Mahenge M P J, Li C, Sanga C A. Energy-efficient task offloading strategy in mobile edge computing for resource-intensive mobile applications[J]. Digital Communications and Networks, 2022, 8(6): 1048-1058.
[6] 班玉琦, 段利国, 温昊宇, 李爱萍, 赵菊敏. 面向移动感知的计算卸载及资源分配策略研究[J]. 计算机工程, 2023, 49(8): 163-173.
Yuqi BAN, Liguo DUAN, Haoyu WEN, Aiping LI, Jumin ZHAO. Research on Mobility-Aware Computation Offloading and Resource Allocation Strategy[J]. Computer Engineering, 2023, 49(8): 163-173.
[7] Mansouri Y, Babar M A. A review of edge computing: Features and resource virtualization[J]. Journal of Parallel and Distributed Computing, 2021, 150: 155-183.
[8] Chen G, Chen Y, Mai Z, et al. Incentive-based distributed resource allocation for task offloading and collaborative computing in MEC-enabled networks[J]. IEEE Internet of Things Journal, 2022, 10(10): 9077-9091.
[9] 李小平, 周志星, 陈龙, 朱洁. 异构边缘资源的任务卸载和协同调度[J]. 计算机研究与发展, 2023, 60(6): 1296-1307. DOI: 10.7544/issn1000-1239.202110936.
Li Xiaoping, Zhou Zhixing, Chen Long, Zhu Jie. Task Offloading and Cooperative Scheduling for Heterogeneous Edge Resources[J]. Journal of Computer Research and Development, 2023, 60(6): 1296-1307. DOI: 10.7544/issn1000-1239.202110936.
[10] Deep A. Dynamic computation offloading with energy harvesting devices: A hybrid decision based deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2020, 7(10): 9303-9317.
[11] Kan T Y, Chiang Y, Wei H Y. Task offloading and resource allocation in mobile-edge computing system[C]//2018 27th wireless and optical communication conference (WOCC). IEEE, 2018: 1-4.
[12] Sadatdiynov K, Cui L, Zhang L, et al. A review of optimization methods for computation offloading in edge computing networks[J]. Digital Communications and Networks, 2023, 9(2): 450-461.
[13] Liu X, Jiang S, Wu Y. A novel deep reinforcement learning approach for task offloading in MEC systems[J]. Applied Sciences, 2022, 12(21): 11260.
[14] Lowe R, Wu Y I, Tamar A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[J]. Advances in neural information processing systems, 2017, 30.
[15] Nguyen D C, Pathirana P N, Ding M, et al. Deep reinforcement learning for collaborative offloading in heterogeneous edge networks[C]//2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE, 2021: 297-303.
[16] Zhao N, Ye Z, Pei Y, et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6949-6960.
[17] Gan Z, Lin R, Zou H. A multi-agent deep reinforcement learning approach for computation offloading in 5G mobile edge computing[C]//2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE, 2022: 645-648.
[18] 叶佩文, 贾向东, 杨小蓉, 牛春雨. 面向车联网的多智能体强化学习边云协同卸载[J]. 计算机工程, 2021, 47(4): 13-20.
YE Peiwen, JIA Xiangdong, YANG Xiaorong, NIU Chunyu. Collaborative Edge and Cloud Offloading for Internet of Vehicles Using Multi-Agent Reinforcement Learning[J]. Computer Engineering, 2021, 47(4): 13-20.
[19] Nguyen D C, Ding M, Pathirana P N, et al. Cooperative task offloading and block mining in blockchain-based edge computing with multi-agent deep reinforcement learning[J]. IEEE Transactions on Mobile Computing, 2021, 22(4).
[20] Jiang W, Feng D, Sun Y, et al. Joint computation offloading and resource allocation for D2D-assisted mobile edge computing[J]. IEEE Transactions on Services Computing, 2022, 16(3): 1949-1963.
[21] Gebrekidan T Z, Stein S, Norman T J. Deepreinforcement learning with coalition action selection for online combinatorial resource allocation with arbitrary action space[C]// Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems (AAMAS). 2024: 660-668.
[22] Xiao Y, Song Y, Liu J. Collaborative multi-agent deep reinforcement learning for energy-efficient resource allocation in heterogeneous mobile edge computing networks[J]. IEEE Transactions on Wireless Communications, 2023, 23(6): 6653-6668.v
[23] Zhou X, Guan X, Sun D, et al. Heterogeneous multi-agent deep reinforcement learning based low carbon emission task offloading in mobile edge computing[J]. Computer Communications, 2025, 234: 108089.
[24] He H, Yang X, Mi X, et al. Multi-agent deep reinforcement learning based dynamic task offloading in a device-to-device mobile-edge computing network to minimize average task delay with deadline constraints[J]. Sensors, 2024, 24(16): 5141.
[25] Fan C, Xu H, Wang Q. Multi-agent deep reinforcement learning for trajectory planning in UAVs-assisted mobile edge computing with heterogeneous requirements[J]. Computer Networks, 2024, 248: 110469.
[26] Hwang S, Lee H, Kim M, et al. Multi-Agent Deep Reinforcement Learning for Decentralized Multi-UAV Mobile Edge Computing Networks[J]. IEEE Internet of Things Journal, 2025.
[27] Li H, Meng S, Sun J, et al. Multi-agent deep reinforcement learning based multi-task partial computation offloading in mobile edge computing[J]. Future Generation Computer Systems, 2025: 107861.
[28] Gebrekidan T Z, Stein S, Norman T. Client-Master Multiagent Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing[J]. ACM Transactions on Autonomous and Adaptive Systems, 2025.
[29] Hayes C F, Rădulescu R, Bargiacchi E, et al. A practical guide to multi-objective reinforcement learning and planning[J]. arXiv preprint arXiv:2103.09568, 2021.
[30] Zhang D, Mu S, Mango J, et al. Deep reinforcement learning for spatial resource allocation: A case study of school districting[J]. Environment and Planning B: Urban Analytics and City Science, 2024: 23998083241302187.
[31] Wang Z, Zhu H, He M, et al. GAN and multi-agent DRL based decentralized traffic light signal control[J]. IEEE Transactions on Vehicular Technology, 2021, 71(2): 1333-1348.
|