[1] IBM. Cost of a Data Breach Report 2024. [EB/OL]. (2024)[2025-08-11]. https://www.ibm.com/reports.
[2] Patil P A, Dhaybar M V. Disaster Recovery as a Cloud Service[J]. International Journal of Latest Technology in Engineering, Management & Applied Science, 2025, 14(13): 32-35.
[3] Jain J. Cloud Computing Unveiled: Trends, Challenges, and Future Directions[J]. Journal of Computer Science, 2024, 3(2): 4-9.
[4] Regalado A, Who Coined ‘Cloud Computing’?, [EB/OL] (2011)[2025-03-30]. https://www.technologyreview.com/ 2011/10/31/257406/who-coined-cloud-computing/.
[5] Logan G. The evolution of backing up to tape and where it stands.[EB/OL].(2018)[2025-02-05]. https://www.techtarget.com/searchdatabackup/feature/The-evolution-of-backing-up-to-tape-and-where-it-stands.
[6] Wiboonrat M, Kosavisutte K. Optimization strategy for disaster recovery[C]//2008 4th IEEE International Conference on Management of Innovation and Technology. IEEE, 2008: 675-680.
[7] Wood T, Cecchet E, Ramakrishnan K K, et al. Disaster recovery as a cloud service: Economic benefits & deployment challenges[C]//2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10). 2010.
[8] Sharma K, Singh K R. Online data back-up and disaster recovery techniques in cloud computing: A review[J]. International Journal of Engineering and Innovative Technology (IJEIT), 2012, 2(5): 249-254.
[9] Chang V. Towards a big data system disaster recovery in a private cloud[J]. Ad hoc networks, 2015,35:65-82.
[10] Colman-Meixner C, Develder C, Tornatore M, et al. A survey on resiliency techniques in cloud computing infrastructures and applications[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2244-2281.
[11] Rashid A, Chaturvedi A. Cloud computing characteristics and services: a brief review[J]. International Journal of Computer Sciences and Engineering, 2019, 7(2): 421-426.
[12] Andrade E, Nogueira B. Performability evaluation of a cloud-based disaster recovery solution for IT environments [J]. Journal of Grid computing, 2019, 17(3): 603-621.
[13] 中国信息通信研究院. 云容灾白皮书[R/OL]. (2022)[2025-02-25]. https://download.s21i.faiusr.com/ 13115299/0/1/ABUIABA9GAAgvNrolAYowKrZ8wM.pdf?f=云容灾白皮书(2022).pdf.
China Academy of Information and Communications Technology. Cloud Disaster Resilience White Paper [R/OL].(2022)[2025-02-25]. https://download.s21i.faiusr. com/13115299/0/1/ABUIABA9GAAgvNrolAYowKrZ8wM.pdf?f=云容灾白皮书(2022).pdf.
[14] Tanenbaum A, Van Steen M, Mullender S. Failover and failback: A systematic survey [J]. ACM Computing Surveys, 2020, 53 (4): 1-30.
[15] 国家市场监督管理总局、中国国家标准化管理委员会. 信息安全技术网络安全等级保护基本要求[R/OL].(2019)[2025-12-07].https://openstd.samr.gov.cn/ bzgk/gb/ newGbInfo.
State Administration for Market Regulation, Standardization Administration of China. Information Security Technology-Basic Requirements for Cybersecurity Classified Protection [R/OL]. (2019) [2025-12-07]. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo.
[16] Abualkishik A Z, Alwan A A, Gulzar Y. Disaster recovery in cloud computing systems: An overview[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(9).
[17] Welsh T, Benkhelifa E. On resilience in cloud computing: A survey of techniques across the cloud domain [J]. ACM Computing Surveys (CSUR), 2020, 53 (3): 1-36.
[18] Arogundade O R. Cloud vs Traditional Disaster Recovery Techniques: A Comparative Analysis[J]. International Advanced Research Journal in Science, Engineering and Technology, 2023, 10: 186-195.
[19] Chandan K, Anumesh R. Cloud Disaster Recovery Management and Business Continuity [J]. Futuristic Trends in High Performance Computing and Software Development, 2024, 5: 41-49.
[20] Huo Y, Su Y, Lee C, et al. Semparser: A semantic parser for log analytics[C]//2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2023: 881-893.
[21] Liu C, Pavlenko A, Interlandi M, et al. Data formats in analytical DBMSs: performance trade-offs and future directions[J]. The VLDB Journal, 2025, 34(3): 30.
[22] Apache Software Foundation. Atlas Document[EB/OL]. (2025)[2025-08-20]. https://atlas.apache.org/
[23] Rianto M, Gunawan R, Darmawan I, et al. Comparison of JSON and XML Data Formats in Document Stored NoSQL Database Replication Processes [J]. International Journal on Advanced Science, Engineering and Information Technology, 2021, 3 (11): 1150-1156.
[24] Liu C, Pavlenko A, Interlandi M, et al. Data formats in analytical DBMSs: performance trade-offs and future directions[J]. The VLDB Journal, 2025, 34(3): 30.
[25] Gregoriadis M, Balduf L, et al. A thorough investigation of content-defined chunking algorithms for data deduplication[J]. arXiv preprint arXiv:2409.06066, 2024.
[26] Xia W, Zhou Y, Jiang H, et al. FastCDC: A fast and efficient Content-Defined chunking approach for data deduplication [C]//2016 USENIX Annual Technical Conference (USENIX ATC 16). 2016: 101-114.
[27] Ni F, Jiang S. RapidCDC: Leveraging duplicate locality to accelerate chunking in CDC-based deduplication systems[C]//Proceedings of the ACM symposium on cloud computing. 2019: 220-232.
[28] Udayashankar S, Baba A, Al-Kiswany S. VectorCDC: Accelerating Data Deduplication with Vector Instructions [C]//23rd USENIX Conference on File and Storage Technologies (FAST 25). 2025: 513-522.
[29] Apache Software Foundation. Flink-CDC Document [EB/OL].(2025)[2025-08-29]. https://nightlies.apache.org/ flink/flink-cdc-docs-release-3.0
[30] Xiong S, Zhang M. Flink-based Heterogeneous Database Synchronization Adapter Design[C]//Journal of Physics: Conference Series. IOP Publishing, 2022,2303(1): 012056.
[31] Jin D, Wang Q. CDP backup and recovery method for ensuring database consistency[C]//2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). IEEE, 2021: 722-728.
[32] Waddington D, Dickey C, Xu L, et al. A High-Performance Persistent Memory Key-Value Store with Near-Memory Compute[J]. arXiv preprint arXiv:2104.06225, 2021.
[33] Malhotra A, Elsayed A, Torres R, et al. Evaluate solutions for achieving high availability or near zero downtime for cloud native enterprise applications[J]. IEEE Access, 2023, 11: 85384-85394.
[34] Tong W. Cloud Native Application Disaster Recovery in a Multi-Cloud Environment: A DevOps Approach Using Terraform[EB/OL]. (2023)[2025-08-11].
[35] Bocchi E, Lekshmanan A, Valverde R, et al. Enabling Storage Business Continuity and Disaster Recovery with Ceph distributed storage[C]//EPJ Web of Conferences. EDP Sciences, 2024, 295: 01021.
[36] Immidisetti V R. Cloud-Native Data Protection with Azure Backup: Architectural Review and Comparative Study[EB/OL]. (2023)[2025-08-11].
[37] Turkkan B, Rodrigues E, Kosar T, et al. How to Evaluate Distributed Coordination Systems-A Survey and Analysis [J]. arXiv preprint arXiv:2403.09445, 2024.
[38] Liang Z, Jabrayilov V, Charapko A, et al. MultiPaxos Made Complete[J]. arXiv preprint arXiv:2405.11183, 2024.
[39] Ongaro D, Ousterhout J. In search of an understandable consensus algorithm[C]//2014 USENIX Annual Technical Conference (USENIX ATC 14). 2014: 305-319.
[40] Kondru K K, Rajiakodi S. RaftOptima: An Optimised Raft with enhanced Fault Tolerance, and increased Scalability with low latency[J]. IEEE Access, 2024.
[41] Zhang M, Kang Q, Lee P P C. FlexRaft: Exploiting Flexible Erasure Coding for Minimum-Cost Consensus and Fast Recovery[J]. IEEE Transactions on Parallel and Distributed Systems, 2024.
[42] Du H, Wang K, Wu Y, et al. Optimizing Consistency in Distributed Data Services: The CP-Raft Protocol for High-Performance and Fault-Tolerant Replication[J]. IEEE Transactions on Services Computing, 2025.
[43] 荣宝俊, 郑朝晖. FLRaft: 基于联邦学习模型的选举共识方案[J].计算机科学, 2023,50(11):364-373.
Rong Baojun, Zheng Zhaohui. FLRaft: A Consensus Election Scheme Based on Federated Learning Model[J].Computer Science, 2023, 50(11): 364-373.
[44] 袁昊天,李飞.基于改进Raft共识算法和PBFT共识算法的双层共识算法[J].计算机应用研究,2024,41(05):1314-1320.DOI:10.19734/j.issn.1001-3695.2023.08.0390.
Yuan Haotian, Li Fei. A Two-Layer Consensus Algorithm Based on Improved Raft Consensus Algorithm and PBFT Consensus Algorithm[J]. Application Research of Computers, 2024, 41(05):1314-1320. DOI:10.19734/j.issn. 1001-3695.2023.08.0390.
[45] Copik M, Calotoiu A, Zhou P, et al. FaaSKeeper: Learning from building serverless services with zookeeper as an example[C]//Proceedings of the 33rd International Symposium on High-Performance Parallel and Distributed Computing. 2024: 94-108.
[46] 张宏海,崔斌豪,李一鸣,等.基于Gossip协议的高效集群数据同步方案[J].北京航空航天大学学报, 2025,51(05): 1629-1636.DOI:10.13700/j.bh.1001-5965.2024.0750.
Zhang Honghai, Cui Binhao, Li Yiming, et al. An Efficient Cluster Data Synchronization Scheme Based on Gossip Protocol[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(05): 1629-1636. DOI: 10.13700/j.bh.1001-5965.2024.0750.
[47] Rawat A, Sushil R, Agarwal A, et al. A new adaptive fault tolerant framework in the cloud[J]. IETE Journal of Research, 2023, 69(5): 2897-2909.
[48] Berkov A, Silva A. Validate your disaster recovery solution and simplify compliance reporting on AWS[EB/OL]. (2021-07-13) [2025-08-11]. https://aws.amazon.com/cn /blogs/storage/validate-disaster-recovery-solution-and-simplify-compliance-reporting-on-aws/
[49] 邢超,姜瑛.基于随机森林的云环境下服务故障识别方法[J].现代电子技术, 2022, 45(16): 87-92.DOI:10.16652/ j.issn.1004-373x.2022.16.017.
Xing Chao, Jiang Ying. Service Fault Identification Method in Cloud Environment Based on Random Forest[J]. Modern Electronics Technique, 2022, 45(16):87-92.DOI:10.16652/j.issn.1004-373x.2022.16.017.
[50] Lou C, Li X, Atoui M A. Bayesian network based on an adaptive threshold scheme for fault detection and classification[J]. Industrial & Engineering Chemistry Research, 2020, 59(34): 15155-15164.
[51] 王博, 华庆一, 舒新峰. 基于云平台日志的故障检测和复杂构件系统即时可靠性度量研究[J].计算机科学,2022,49(12):125-135.
Wang Bo, Hua Qingyi, Shu Xinfeng. Research on Fault Detection and Instant Reliability Measurement of Complex Component Systems Based on Cloud Platform Logs[J]. Computer Science, 2022, 49(12): 125-135.
[52] Kim J B, Choi J B, Jung E S. Design and Implementation of an Automated Disaster-Recovery System for a Kubernetes Cluster Using LSTM[J]. Applied Sciences, 2024, 14(9): 3914.
[53] Li X, Xiao B, Chen X, et al. MSDF-VAE: A Cloud-Edge Collaborative Method for Fault Diagnosis Based on Transfer Learning [J]. IEEE Internet of Things Journal, 2025.
[54] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers). 2019: 4171-4186.
[55] Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by generative pre-training [J]. Journal of Machine Learning Research, 2018, 19 (1): 2416-2454.
[56] Touvron H, Lavril T, Izacard G, et al. Llama: Open and efficient foundation language models[J]. arXiv preprint arxiv:2302.13971, 2023.
[57] Hacigumus H, Iyer B, Mehrotra S. Providing database as a service[C]//Proceedings 18th International Conference on Data Engineering. IEEE, 2002: 29-38.
[58] Li S, Zhang Y, et al. Beyond Security: Achieving Fairness in Mailmen-Assisted Timed Data Delivery[J]. IEEE Transactions on Information Forensics and Security, 2024.
[59] Van Dijk M, Gentry C, Halevi S, et al. Fully homomorphic encryption over the integers [C]//Advances in Cryptology–EUROCRYPT 2010: 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30–June 3, 2010. Proceedings 29. Springer Berlin Heidelberg, 2010: 24-43.
[60] Chu C K, Chow S S M, Tzeng W G, et al. Key-aggregate cryptosystem for scalable data sharing in cloud storage [J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 25 (2): 468-477.
|