[1] FARZANEH M R, JAMSHIDIHA F, KOWSARIAN S. Inhalational lung disease[J]. International Journal of Occupational and Environmental Medicine, 2010, 1(1): 11-20.
[2] GBD 2016 DALY Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries
1990–2016: a systematic analysis for the Global Burden
of Disease Study 2016[J]. Lancet, 2017, 390(10100): 1211–1259.
[3] 李义诺,张文礼,桂晓玲,等. 尘肺病肺纤维化患者合并肺癌的影响因素分析[J]. 癌症进展, 2025, 23(16): 1882-1885.
LI Yinuo, ZHANG Wenli, GUI Xiaoling, et al. Analysis of influencing factors of lung cancer in pneumoconiosis patients with pulmonary fibrosis[J]. Cancer Progress, 2025, 23(16): 1882-1885.
[4] 娄贺仁,王欣. 我国尘肺病疾病负担的研究进展[J]. 中华劳动卫生职业病杂志, 2023, 41(2): 155-160.
LOU Heren, WANG Xin. Research progress on the disease burden of pneumoconiosis in China[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2023, 41(2): 155-160.
[5] 张镏琢,李智民,罗军,等. 肺病诊断读片差异性分析[J]. 职业卫生与应急救援,2019, 37(5): 425-428, 440.
Zhang L, Li Z, Luo J, et al. Deviation analysis of reading chest X-ray film for pneumoconiosis diagnosis[J]. Occupational Health and Emergency Rescue, 2019, 37(5): 425-428, 440.
[6] 余晨,李德鸿,张幸,等. 职业性尘肺病的诊断:GBZ 70-2015 [M]. 北京:中国标准出版社,2015: 1-20.
Yu C, Li D, Zhang X, et al. Diagnosis of Occupational Pneumoconiosis: GBZ 70-2015 [M]. Beijing: Standards Press of China, 2015: 1-20.
[7] 张雅娟,曾凤霞,陈卫国,等. 基于2015版尘肺病诊断标准影像报告及诊断分期的一致性研究[J]. 实用医学杂志,2021, 37(6): 797-801.
Zhang Y, Zeng F, Chen W, Qin G. Study on the consistency of image report and diagnostic staging based on the diagnostic criteria of pneumoconiosis in 2015[J]. The Journal of Practical Medicine, 2021, 37(6): 797-801.
[8] 裴莎莎,李金龙,沈福海. 人工智能辅助诊断尘肺病的现状及趋势[J]. 现代养生, 2023, 23(10): 726-729.
PEI Shasha, LI Jinlong, SHEN Fuhai. Artificial intelligence-assisted diagnosis of pneumoconiosis: current status and trends[J]. Modern Health Preservation, 2023, 23(10): 726-729.
[9] Murray V, Pattichis M S, Davis H, et al. Multiscale AM-FM analysis of pneumoconiosis x-ray images[C]// 2009 16th IEEE International Conference on Image Processing (ICIP). Cairo, Egypt: IEEE, 2009: 4201-4204.
[10] Zhu B, Chen H, Chen B, et al. Support vector machine model for diagnosing pneumoconiosis based on wavelet texture features of digital chest radiographs[J]. Journal of Digital Imaging, 2014, 27(1): 90-97.
[11] Okumura E, Kawashita I, Ishida T. Computerized Classification of Pneumoconiosis on Digital Chest Radiography Artificial Neural Network with Three Stages[J]. Journal of Digital Imaging, 2017, 30(4): 413-426.
[12] LI X, SHEN L, LUO S. A solitary feature-based lung nodule detection approach for chest X-ray radiographs[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(2): 516-524.
[13] CHEN B, LI J, LU G, et al. Label co-occurrence learning with graph convolutional networks for multi-label chest X-ray image classification[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(8): 2292-2302.
[14] Yu P, et al. Computer aided detection for pneumoconiosis based on histogram analysis[C]// Proceedings of the 2009 First International Conference on Information Science and Engineering. Nanjing, China: IEEE, 2009: 3625-3628.
[15] Zheng R, Deng K, Jin H, et al. An Improved CNN-Based Pneumoconiosis Diagnosis Method on X-ray Chest Film[C]// Human Centered Computing. HCC 2019. Cham: Springer International Publishing, 2019: 647–658.
[16] Wang J, Song M, Fan D P, et al. Radiologist-inspired Symmetric Local–Global Multi-Supervised Learning for early diagnosis of pneumoconiosis[J]. Expert Systems with Applications, 2025, 276: 127173.
[17] Sun W, Wu D, Luo Y, et al. Deep Log-Normal Label Distribution Learning for Pneumoconiosis Staging on Chest Radiographs[C]// 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS). Shenzhen, China: IEEE, 2022: 372-376.
[18] 吴健,纪国华,赵涓涓,等. 多尺度信息提取融合的尘肺病X射线图像分期方法[J]. 小型微型计算机系统, 2025, 46(12): 2934-2940.
Wu J, Ji G, Zhao J, et al. Multi-scale Information Extraction and Fusion Approach for Pneumoconiosis Staging and Classification in Chest X-ray Image[J]. Journal of Chinese Computer Systems, 2025, 46(12): 2934-2940.
[19] 冯伟毅, 任雪婷, 王盈森, 等. 基于不确定性估计与动态样本选择的噪声标签尘肺分期方法[J/OL]. 计算机工程, 2025, 1-11.
Feng W, Ren X, Wang Y, et al. A Pneumoconiosis Staging Method Based on Uncertainty Estimation and Dynamic Sample Selection for Noisy Labels[J/OL]. Computer Engineering, 2025, 1-11.
[20] 王月莹, 纪国华, 冯伟毅, 等. SP-CPGCN: 用于尘肺病分期的超像素先验因果感知图卷积网络[J]. 计算机应用研究, 2025, 42(4): 1-8.
Wang Y, Ji G, Feng W, et al. SP-CPGCN: Causality-perception graph convolutional network on superpixel prior for pneumoconiosis staging[J]. Application Research of Computers, 2025, 42(4): 1-8.
[21] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018: 3-19.
[22] Jaeger S, Candemir S, Antani S, et al. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases[J]. Quantitative Imaging in Medicine and Surgery, 2014, 4(6): 475–477.
[23] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. arXiv preprint, 2020. arXiv:2010.11929.
[24] Liu Z, et al. Swin Transformer: Hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2021: 9992-10002.
[25] Song M, Wang J, Yu Z, et al. PneumoLLM: Harnessing the power of large language model for pneumoconiosis diagnosis[J]. Medical Image Analysis, 2024, 97: 103248.
[26] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//International Conference o Learning Representations. San Diego, CA, USA: Computational and Biological Learning Society, 2015.
[27] C. Szegedy, V. Vanhoucke, S. Ioffe, et al. Rethinking the Inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 2818-2826.
[28] Ma D, Pang J, Gotway M B, et al. A fully open AI foundation model applied to chest radiography[J]. Nature, 2025, 643: 488-498.
[29] 夏伟,何平. 不同分期煤工尘肺病例肺功能与炎症因子的相关性分析[J]. 疾病预防控制通报, 2023, 38(3): 6-9+20.
XIA Wei, HE Ping. Correlation analysis of lung function and inflammatory factors in patients with coal workers' pneumoconiosis at different stages[J]. Chinese Journal of Disease Control and Prevention, 2023, 38(3): 6-9+20.
[30] 黄丽明,伍淑贞,黄润强.高分辨率CT在职业性尘肺病分期诊断中的应用价值[J].影像研究与医学应用,2025,9(15):134-136.
Huang L, Wu S, Huang R. Application value of high-resolution CT in the staging diagnosis of occupational pneumoconiosis[J]. Imaging Research and Medical Application, 2025, 9(15): 134–136.
|