[1] Wu J H, Guo D, Wang G T, et al. FPL+: Filtered Pseudo Label-Based Unsupervised Cross-Modality Adaptation for 3D Medical Image Segmentation[J]. IEEE Transactions on Medical Imaging, 2024, 43(9): 3098-3109.
[2] 郝宏达,罗健旭. 基于多尺度区域特征融合的多器官语义分割模型[J]. 计算机工程, 2025, 51(8): 270-280.
HAO H D, LUO J X. Multi-Organ Semantic Segmentation Model Based on Multi-Scale Region Feature Fusion[J]. Computer Engineering, 2025, 51(8): 270-280.
[3] Dong S J, Pan Z X, Fu Y, et al. Partial Unbalanced Feature Transport for Cross-Modality Cardiac Image Segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(6):1758-1773.
[4] 潘杰,刘波,邹筱瑜.基于特征异常检测与伪标签回归的无监督对抗域适应[J]. 电子学报, 2025,53(1):128-140.
PAN J, LIU B, ZOU X. Unsupervised Adversarial Domain Adaptation via Feature Anomaly Detection and Pseudo-Label Regression [J]. Acta Electronica Sinica, 2025, 53(1): 128-140.
[5] Pei C H, Wu F P, Huang L Q, Zhuang X H. Disentangle domain features for cross-modality cardiac image segmentation[J]. Medical Image Analysis, 2021, 71:102078.
[6] Kundu J N, Venkat N, Rahul M V, et al. Universal Source-Free Domain Adaptation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4543-4552.
[7] Xie Q S, Li Y X, He N J, et al. Unsupervised Domain Adaptation for Medical Image Segmentation by Disentanglement Learning and Self-Training[J]. IEEE Transactions on Medical Imaging, 2024, 43(1): 4-14.
[8] Li J J, Yu Z Q, Du Z K, et al. A Comprehensive Survey on Source-Free Domain Adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(8): 5743-5762.
[9] Wang Y, Cheng J, Chen Y X, et al. FVP: Fourier Visual Prompting for Source-Free Unsupervised Domain Adaptation of Medical Image Segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(12): 3738-3751.
[10] Bateson M, Kervadec H, Dolz J, et al. Source-free domain adaptation for image segmentation[J]. Medical Image Analysis, 2022, 82:102617.
[11] Wang Y X, Liang J, Zhang Z X. A Curriculum-Style Self-Training Approach for Source-Free Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 9890-9907.
[12] Liu X Y, Wu J H, Lu T, et al. SRPL-SFDA: Sam-Guided Reliable Pseudo-Labels For Source-Free Domain Adaptation in medical image segmentation[J]. Neurocomputing, 2025, 649: 130749.
[13] Luo Z H, Luo X D, Gao Z J, et al. An Uncertainty-Guided Tiered Self-training Framework for Active Source-Free Domain Adaptation in Prostate Segmentation[C]. International conference on Medical Image Computing and Computer Assisted Intervention. 2024: 107-117.
[14] Zhang T W, Li K, Gu S, Heng P A. Enhancing source-free domain adaptation in Medical Image Segmentation via regulated model self-training[J]. Medical Image Analysis, 2025, 102:103543.
[15] 呼伟,徐巧枝,葛湘巍,等.医学图像分割的无监督域适应研究综述[J]. 计算机工程与应用, 2024,60(6):10-26.
HU W, XU Q Z, GE X W, et al. A Survey on Unsupervised Domain Adaptation for Medical Image Segmentation[J]. Computer Engineering and Applications, 2024, 60(6): 10-26.
[16] Liu J P, Zhao J Q, Xiao J R, et al. Unsupervised domain adaptation multi-level adversarial learning-based crossing-domain retinal vessel segmentation[J]. Computers in Biology and Medicine, 2024, 178: 108759.
[17] Xian J L, Li X, Tu D D, et al. Unsupervised Cross-Modality Adaptation via Dual Structural-Oriented Guidance for 3D Medical Image Segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(6): 1774-1785.
[18] Dong S J, Pan Z X, Fu Y, et al. Partial Unbalanced Feature Transport for Cross-Modality Cardiac Image Segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(6): 1758-1773
[19] Shin H S, Kim H Y, Kim S W, et al. SDC-UDA: Volumetric Unsupervised Domain Adaptation Framework for Slice-Direction Continuous Cross-Modality Medical Image Segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7412-7421.
[20] Zhang X Z, Wu Y H, Angelini E, et al. MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 5851-5862.
[21] Cheng Y T, Wei F Y, Bao J M, et al. ADPL: Adaptive Dual Path Learning for Domain Adaptation of Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9339-9356.
[22] Feng W, Ju L, Wang L, et al. Unsupervised Domain Adaptation for Medical Image Segmentation by Selective Entropy Constraints and Adaptive Semantic Alignment[C]. AAAI Conference on Artificial Intelligence, 2023, 37(1): 623-631.
[23] Shen F Y, Gurram A, Liu Z Y, et al. DiGA: Distil to Generalize and then Adapt for Domain Adaptive Semantic Segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 15866-15877.
[24] Hoyer L, Dai D X, Wang H R, et al. MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 11721-11732.
[25] Chen L, Bian Y, Zeng J, et al. Style Consistency Unsupervised Domain Adaptation Medical Image Segmentation[J]. IEEE Transactions on Image Processing, 2024, 33: 4882-4895.
[26] Xie Q S, Li Y X, He N J, et al. Unsupervised Domain Adaptation for Medical Image Segmentation by Disentanglement Learning and Self-Training[J]. IEEE Transactions on Medical Imaging, 2024, 43(1): 4-14.
[27] Basak H, Yin Z Z. Forget More to Learn More: Domain-Specific Feature Unlearning for Semi-supervised and Unsupervised Domain Adaptation[C]. European Conference on Computer Vision 2024: 130-148.
[28] Zhao D, Wang S, Zang Q, et al. Towards Better Stability and Adaptability: Improve Online Self-Training for Model Adaptation in Semantic Segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 11733-11743.
[29] Ding N, Xu Y X, Tang Y H, et al. Source-Free Domain Adaptation via Distribution Estimation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 7202-7212.
[30] Yang C, Guo X Q, Chen Z, Yuan Y X. Source free domain adaptation for medical image segmentation with fourier style mining[J]. Medical Image Analysis, 2022, 79: 102457.
[31] Yang S Q, Wang Y X, van de Weijer J, et al. Trust Your Good Friends: Source-Free Domain Adaptation by Reciprocal Neighborhood Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 15883-15895.
[32] Stan S, Rostami M. Unsupervised model adaptation for source-free segmentation of medical images[J]. Medical Image Analysis, 2024, 95: 103179.
[33] Yi L, Xu G, Xu P. When Source-Free Domain Adaptation Meets Learning with Noisy Labels[C]. International Conference on Learning Representations. 2023:19986-20018.
[34] Karim N, Mithun N C, Rajvanshi A, et al. C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 24120-24131.
[35] Zeng H Y, Zou K, Chen Z H, et al. Reliable Source Approximation: Source-Free Unsupervised Domain Adaptation for Vestibular Schwannoma MRI Segmentation[C]. International conference on Medical Image Computing and Computer Assisted Intervention. 2024: 622-632.
[36] Xu Z, Lu D H, Wang Y X, et al. Denoising for Relaxing: Unsupervised Domain Adaptive Fundus Image Segmentation Without Source Data[C]. International conference on Medical Image Computing and Computer Assisted Intervention, 2022: 214-224.
[37] Viti B, Thaler F, Kapper K L, et al. Gaussian Process Emulators for Few-Shot Segmentation in Cardiac MRI[C]. The 15th Statistical Atlases and Computational Modeling of the Heart Workshop. 2024: 257-268.
[38] Diakogiannis F I, Waldner F, Caccetta P, Wu C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94-114.
[39] Chi H Y, Pang J, Zhang B F, et al. Adaptive Bidirectional Displacement for Semi-Supervised Medical Image Segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 4070-4080.
[40] Yang Y C, Soatto S. FDA: Fourier Domain Adaptation for Semantic Segmentation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020:4084-4094.
[41] Li H, Li H, Chen J, et al. AIF-SFDA: Autonomous Information Filter Driven Source-Free Domain Adaptation for Medical Image Segmentation[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2025, 39(5):4716-4724.
|