[1] Huang R, Tao Z, Lin Y, et al. Current Situation of Drainage Pipe Network in China and its Detection Technology: a Brief Review[J]. Polish Journal of Environmental Studies, 2024, 33(1):19-29.
[2] 任书玉,汪晓丁,林晖.目标检测中注意力机制综述[J].计算机工程,2024,50(12):16-32.
Ren Shuyu, Wang Xiaoding, Lin Hui,et al.Review of Attention Mechanisms in Object Detection.Computer Engineering,2024,50(12):16-32.
[3] Girshick R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
[4] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(6): 1137-1149.
[5] Cheng J C P, Wang M. Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques[J]. Automation in Construction, 2018, 95: 155-171.
[6] Li D, Xie Q, Yu Z, et al. Sewer pipe defect detection via deep learning with local and global feature fusion[J]. Automation in Construction, 2021, 129: 103823.
[7] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
[8] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//European conference on computer vision. Cham: Springer International Publishing, 2016: 21-37.
[9] Shen D, Liu X, Shang Y, et al. Deep learning-based automatic defect detection method for sewer pipelines[J]. Sustainability, 2023, 15(12): 9164.
[10] Zhang J, Liu X, Zhang X, et al. Automatic detection method of sewer pipe defects using deep learning techniques[J]. Applied Sciences, 2023, 13(7): 4589.
[11] 游小玲,蔡永香,王荟奥,等. FEDDR:一套实用的地下排水管道缺陷智能检测系统 [J]. 科学技术与工程, 2023, 23 (07): 2932-2944.
You Xiaoling, Cai Yongxiang, Wang Hui'ao, et al. FEDDR: A practical intelligent detection system for underground drainage pipeline defects[J]. Science Technology and Engineering, 2023, 23(07): 2932-2944.
[12] Zhou B, Li B, Lan W, et al. SDH-FCOS: An Efficient Neural Network for Defect Detection in Urban Underground Pipelines[J]. Computers, Materials & Continua, 2024, 78(1):633-652.
[13] Dong J, Liao M. Defect Detection of Urban Drainage Pipeline Based on Improved YOLO-V8[C]//2024 IEEE 7th International Conference on Information Systems and Computer Aided Education (ICISCAE). IEEE, 2024: 284-289.
[14] 陆绮荣,丁昕,梁雅雯.基于改进YOLOX的地下排水管道缺陷识别算法[J].电子测量技术,2022,45(21):161-168.
Lu Qirong,Ding Xin,Liang Yawen.A Defect Recognition Method for Underground Drainage Pipe Based on an Improved YOLOX Algorithm.Electronic Measurement Technology,2022,45(21):161-168.
[15] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//European conference on computer vision. Cham: Springer International Publishing, 2020: 213-229.
[16] Zhao Y, Lv W, Xu S, et al. Detrs beat yolos on real-time object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024: 16965-16974.
[17] Wu H, Huang P, Zhang M, et al. CMTFNet: CNN and multiscale transformer fusion network for remote-sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-12.
[18] Xu W, Wan Y. ELA: Efficient local attention for deep convolutional neural networks [EB/OL]. (2024-3-2) [2025-9-10].https://arxiv.org/abs/2403.01123.
[19] Li H, Li J, Wei H, et al. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles[EB/OL].(2022-10-5)[2025-9-10].https://arxiv.org/abs/2206.02424.
[20] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[21] Shi D. Transnext: Robust foveal visual perception for vision transformers[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024: 17773-17783.
[22] Haurum J B, Moeslund T B. Sewer-ML: A multi-label sewer defect classification dataset and benchmark[C]//Proceedings of the IEEE/cvf conference on computer vision and pattern recognition. 2021: 13456-13467.
[23] Cai Z, Vasconcelos N. Cascade r-cnn: Delving into high quality object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 6154-6162.
[24] Talaat F M, ZainEldin H. An improved fire detection approach based on YOLO-v8 for smart cities[J]. Neural computing and applications, 2023, 35(28): 20939-20954.
[25] Wang A, Chen H, Liu L, et al. Yolov10: Real-time end-to-end object detection[J]. Advances in Neural Information Processing Systems, 2024, 37: 107984-108011.
[26] Tian Y, Ye Q, Doermann D. Yolov12: Attention-centricreal-time object detectors[EB/OL]. (2025-2-18)[2025-9-10].https://arxiv.org/abs/2502.12524.
|