| [1] 于凯丽. 基于深度学习的语义分割算法研究[D]. 济南: 山东大学, 2025.
Yu, KL. Research on Semantic Segmentation Algorithms Based on Deep Learning[D].ShanDong University, 2025.
[2] 杨雪, 范勇, 高琳, 等. 基于纹理基元块识别与合并的图像语义分割[J]. 计算机工程, 2015, 41(3): 253.
YANG Xue,FAN Yong,GAO Lin,QIU Yunchun. Image Semantic Segmentation Based on Texture Element Block Recognition and Merging[J]. Computer Engineering.
[3] 霍震, 金立生, 华强, 等. 基于边缘特征引导的智能汽车语义分割方法[J]. 吉林大学学报(工学版), 2025, 55(9): 3032-3041.
Huo Z, Jin L, Hua Q. Edge feature⁃guided semantic segmentation method for intelligent vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(9): 3032-3041.
[4] 贾轩. 面向可穿戴产品的基于深度度量学习和语义分割的自然场景识别[D]. 北京: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2025.
Jia X. Natural Scene Recognition for Wearable Devices Based on Deep Metric Learning and Semantic Segmentation[D]. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2025.
[5] 姜佳良. 基于MODNet的眼镜图像抠图算法研究[D]. 长春工业大学, 2024.
Jiang J. Research on MODNet-based Matting Algorithm for Glasses Images[D]. Changchun University of Technology, 2024.
[6] Peng Y, Chen D Z, Sonka M. U-net V2: rethinking the skip connections of U-net for medical image segmentation[C]//2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI). 2025: 1-5.
[7] Abass H K. DAB-UNET: dual attention block UNET segmentation for diabetic retinopathy utilizing an encoder-decoder residual[J]. Journal of Image and Graphics, 2025, 13(3).
[8] Meng W, Liu S, Wang H. AFC-unet: attention-fused full-scale CNN-transformer unet for medical image segmentation[J]. Biomedical Signal Processing and Control, 2025, 99: 106839.
[9] Mohammadi S, Ahmadi Livani M. Enhanced breast mass segmentation in mammograms using a hybridtransformer UNet model[J]. Computers in Biology and Medicine, 2025, 184: 109432.
[10] Gu A, Dao T. Mamba: linear-time sequence modeling with selective state spaces[A]. arXiv, 2024.
[11] Ruan J, Xiang S. VM-UNet: vision mamba UNet for medical image segmentation[A]. arXiv, 2024.
[12] Ma J, Li F, Wang B. U-mamba: enhancing long-range dependency for biomedical image segmentation[A]. arXiv, 2024.
[13] Liu D, Wang Z, Liang A. MiM-UNet: an efficient building image segmentation network integrating state space models[J]. Alexandria Engineering Journal, 2025, 120: 648-656.
[14] Zhu L, Liao B, Zhang Q, et al. Vision mamba: efficient visual representation learning with bidirectional state space model[EB/OL]. (2024-01-17)[2024-09-12]. https://arxiv.org/abs/2401.09417v2.
[15] Liu Y, Tian Y, Zhao Y, et al. VMamba: visual state space model[A]. arXiv, 2024.
[16] Yang C, Chen Z, Espinosa M, et al. PlainMamba: improving non-hierarchical mamba in visual recognition[A]. arXiv, 2024.
[17] Xiao P, Dong Y, Zhao J, et al. MF-mamba: multiscale convolution and mamba fusion model for semantic segmentation of remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 1-16.
[18] Pei X, Huang T, Xu C. EfficientVMamba: atrous selective scan for light weight visual mamba[A]. arXiv, 2024.
[19] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[A]. arXiv, 2015.
[20] Odena A, Dumoulin V, Olah C. Deconvolution and checkerboard artifacts[J]. Distill, 2016, 1(10): e3.
[21] Wang J, Chen K, Xu R, et al. CARAFE: content-aware ReAssembly of FEatures[A]. arXiv, 2019.
[22] Lu H, Liu W, Fu H, et al. FADE: fusing the assets of decoder and encoder for task-agnostic upsampling[A]. arXiv, 2022.
[23] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[A]. arXiv, 2017.
[24] Liu W, Lu H, Fu H, et al. Learning to upsample by learning to sample[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 6027-6037.
[25] Li X, Xie ,Linglin, Wang ,Caifeng, et al. Boundary-enhanced dual-stream network for semantic segmentation of high-resolution remote sensing images[J]. GIScience & Remote Sensing, 2024, 61(1): 2356355.
[26] Takikawa T, Acuna D, Jampani V, et al. Gated-SCNN: gated shape CNNs for semantic segmentation[A]. arXiv, 2019.
[27] Fan M, Lai S, Huang J, et al. Rethinking BiSeNet for real-time semantic segmentation[A]. arXiv, 2021.
[28] Xiao X, Zhao Y, Zhang F, et al. BASeg: boundary aware semantic segmentation for autonomous driving[J]. Neural Networks, 2023, 157: 460-470.
[29] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[30] Kirillov A, Wu Y, He K, et al. PointRend: image segmentation as rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 9799-9808.
[31] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[A]. arXiv, 2016.
[32] Shi W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[A]. arXiv, 2016.
[33] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[A]. arXiv, 2018.
[34] Codella N C F, Gutman D, Celebi M E, et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)[C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 2018: 168-172.
[35] Codella N, Rotemberg V, Tschandl P, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC)[A]. arXiv, 2019.
[36] Cheng B, Girshick R, Dollár P, et al. Boundary IoU: improving object-centric image segmentation evaluation[A]. arXiv, 2021.
[37] Ruan J, Xie M, Gao J, et al. EGE-UNet: an efficient group enhanced UNet for skin lesion segmentation[A]. arXiv, 2023.
[38] Gao Y, Zhou M, Metaxas D. UTNet: a hybrid transformer architecture for medical image segmentation[A]. arXiv, 2021.
[39] Zhang Y, Liu H, Hu Q. TransFuse: fusing transformers and CNNs for medical image segmentation[A]. arXiv, 2021.
[40] Ruan J, Xiang S, Xie M, et al. MALUNet: a multi-attention and light-weight UNet for skin lesion segmentation[A]. arXiv, 2022.
[41] Peng Y, Sonka M, Chen D Z. U-net v2: rethinking the skip connections of U-net for medical image segmentation[A]. arXiv, 2024. |