[1] DA SILVA M P, COURBOULAY V, ESTRAILLIER P. Image complexity measure based on visual attention[C]//2011 18th IEEE International Conference on Image Processing. Brussels, Belgium: IEEE, 2011: 3281-3284.
[2] GUO X, KURITA T, ASANO C M, et al. Visual complexity assessment of painting images[C]//2013 IEEE International Conference on Image Processing. Melbourne, VIC, Australia: IEEE, 2013: 388-392.
[3] NICOLAE I E, IVANOVICI M. Color texture image complexity—EEG-sensed human brain perception vs. computed measures[J]. Applied Sciences, 2021, 11(9): 4306.
[4] KYLE-DAVIDSON C, ZHOU E Y, WALTHER D B, et al. Characterising and dissecting human perception of scene complexity[J]. Cognition, 2023, 231: 105319.
[5] DURMUS D. Spatial frequency and the performance of image-based visual complexity metrics[J]. IEEE Access, 2020, 8: 100111-100119.
[6] TANG Y, CUNNINGHAM W A, WALTHER D B. Less is more: Aesthetic liking is inversely related to metabolic expense by the visual system[J]. PNAS Nexus, 2025, 4(12): pgaf347.
[7] WANG H, SONG C, GAO P. Complexity and entropy of natural patterns[J]. PNAS nexus, 2024, 3(10): pgae417.
[8] ROSENHOLTZ R, LI Y, NAKANO L. Measuring visual clutter[J]. Journal of vision, 2007, 7(2): 17-17.
[9] 王大铭, 史鹏飞, 雷一航, 等. 基于均匀量化的二维多尺度排列熵算法[J]. 通信学报, 2024, 45(Z1): 75-86.
WANG D, SHI P, LEI Y, et al. Two-dimensional multi-scale permutation entropy algorithm based on uniform quantization[J]. Journal on Communications, 2024, 45(Z1): 75-86.
[10] MACHADO P, ROMERO J, NADAL M, et al. Computerized measures of visual complexity[J]. Acta psychologica, 2015, 160: 43-57.
[11] LUKIN V V, KRIVENKO S S, LI F, et al. On Image Complexity in Viewpoint of Image Processing Performance[C]//3rd International Workshop on Intelligent Information Technologies & Systems of Information Security. Khmelnytskyi, Ukraine: Khmelnytskyi National University, 2022: 458-473.
[12] YU H, WINKLER S. Image complexity and spatial information[C]//2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX). Klagenfurt am Wörthersee, Austria: IEEE, 2013: 12-17.
[13] MAHON L, LUKASIEWICZ T. Minimum description length clustering to measure meaningful image complexity[J]. Pattern Recognition, 2024, 145: 109889.
[14] ABDELWAHAB M A, ILIYASU A M, SALAMA A S. Leveraging the potency of CNN for efficient assessment of visual complexity of images[C]//2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA). Istanbul, Turkey: IEEE, 2019: 1-8.
[15] SARAEE E, JALAL M, BETKE M. Visual complexity analysis using deep intermediate-layer features[J]. Computer Vision and Image Understanding, 2020, 195: 102949.
[16] 陈燕芹, 段锦, 祝勇, 钱小飞, 肖博. 基于纹理特征的图像复杂度研究[J]. 中国光学(中英文), 2015, 8(3): 407-414.
CHEN Y, DUAN J, ZHU Y, QIAN X, XIAO B. Research on the image complexity based on texture features[J]. Chinese Optics, 2015, 8(3): 407-414.
[17] FENG T, ZHAI Y, YANG J, et al. Ic9600: A benchmark dataset for automatic image complexity assessment[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(7): 8577-8593.
[18] GUO X, WANG L, YAN T, et al. Image visual complexity evaluation based on deep ordinal regression[C]//Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Singapore: Springer Nature Singapore, 2023: 199-210.
[19] LIU S, ZHAO L, CHEN D, et al. Contrastive learning for image complexity representation[EB/OL]. (2024-08-06)[2025-10-23]. https://arxiv.org/abs/2408.03230.
[20] CELONA L, CIOCCA G, SCHETTINI R. On the Use of Visual Transformer for Image Complexity Assessment[C]//Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP). Portugal: SCITEPRESS, 2024: 640-647.
[21] LI F, LUKIN V, OKARMA K, et al. Intelligent lossy compression method of providing a desired visual quality for images of different complexity[C]//Proceedings of the 2021 International Conference on Applied Mathematics, Modeling and Computer Simulation. Wuhan, China: IOS Press, 2021: 500-505.
[22] 苗锡奎,张恒伟,马天磊,等.基于图像结构复杂度的背景杂波表征方法[J].电光与控制,2023,30(09):79-84.
MIAO X, ZHANG H, MA T, YANG L, ZOU Q. An Image Background Clutter Modeling Method Based on Structural Complexity[J]. Electronics Optics & Control, 2023, 30(9): 0074.
[23] WANG H, LI Z, LI Y, et al. Visual saliency guided complex image retrieval[J]. Pattern recognition letters, 2020, 130: 64-72.
[24] MADRID-HERRERA L, CHACON-MURGUIA M I, RAMIREZ-QUINTANA J A. AENCIC: a method to estimate the number of clusters based on image complexity to be used in fuzzy clustering algorithms for image segmentation[J]. Soft Computing, 2024, 28(15-16): 8561-8577.
[25] PAN Z, YI J, PENG B, et al. Evaluating Visual Quality of Autostereoscopic Displays Using an Interactive Perception Network[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 1-17.
[26] WU J, ZHANG Y, SHAN T, et al. An additive feature fusion attention based on YOLO network for aircraft skin damage detection[J]. The Journal of Supercomputing, 2025, 81(4): 627.
[27] ZHAO S, XU T, LI H, et al. Visual complexity guided diffusion defender for video object tracking and recognition[J]. Pattern Recognition, 2026, 169: 111867.
[28] 向征,张佳浩.基于 SM-YOLOv8n的无人机航拍目标检测[J].海军航空大学学报,2025,40(2):321-328.
XIANG Z, ZHANG J H. UAV aerial target detection based on SM-YOLOv8n[J]. Journal of Naval Aviation University, 2025, 40(2): 321-328.
[29] JIANG Y, ZHANG Y, LI S, et al. A Real-World Animation Super-Resolution Benchmark With Color Degradation and Multi-Scale Multi-Frequency Alignment[J]. IEEE Transactions on Image Processing, 2025, 34: 5598-5613.
[30] 孙靖森, 李宗豫, 杨森, 等. 基于集成改进卷积注意力块的SAR图像目标分类算法[J]. 海军航空大学学报, 2024, 39(4): 445-452.
SUN J S, LI Z Y, YANG S, et al. SAR image target classification algorithm based on integrated improved convolutional block attention module[J]. Journal of Naval Aviation University, 2024, 39(4): 445-452.
[31] SHEPPARD S. Image content, complexity, and the market value of art[M]. Williamstown, USA: Williams College, 2021.
[32] XIE P, KIM E, LAM S Y, et al. Herding behavior in NFT Auction: The role of visual complexity and familiarity[J]. International Journal of Research in Marketing, 2024.
[33] SHAHID Z K, SAGUNA S, ÅHLUND C. Detecting anomalies in daily activity routines of older persons in single resident smart homes: Proof-of-concept study[J]. JMIR aging, 2022, 5(2): e28260.
[34] GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752.
[35] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25 (NIPS 2012). Lake Tahoe, USA: NIPS Foundation, 2012: 1106-1114.
[36] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 770-778.
[37] LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE, 2022: 11976-11986.
[38] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu, HI, USA: IEEE, 2017: 4700-4708.
[39] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]// Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015). San Diego, USA: OpenReview.net, 2015: 1-14.
[40] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE Press, 2017: 1-9.
[41] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. International Journal of Computer Vision, 2021, 129(3): 68-88.
[42] SU S, FAN M, LI J, et al. Blindly Assess Image Quality in the Wild Guided by a Self-Adaptive Hyper Network[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020: 3664-3673.
[43] YANG S, CAO Y, WANG B, et al. MANIQA: Multi-dimension Attention Network for No-Reference Image Quality Assessment[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New Orleans, USA: IEEE, 2022: 1190-1199.
[44] AGNOLUCCI L, GALTERI L, BERTINI M, et al. Arniqa: Learning distortion manifold for image quality assessment[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2024: 189-198.
[45] CHEN C, MO J, HOU J, et al. Topiq: A top-down approach from semantics to distortions for image quality assessment[J]. IEEE Transactions on Image Processing, 2024, 33: 2404-2418.
[46] HE S, XIAO Y, MING A, et al. Prompt-guided image color aesthetics assessment: Models, datasets and benchmarks[J]. Information Fusion, 2025, 114: 102706.
[47] BEHRAD F, TUYTELAARS T, WAGEMANS J. Charm: The Missing Piece in ViT fine-tuning for Image Aesthetic Assessment[C]//2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2025: 7815-7824.
[48] Mamayev A. Flowers Recognition Dataset[EB/OL]. [2025-12-08]. https://www.kaggle.com/datasets/alxmamaev/flowers-recognition.
[49] Parkhi O M, Vedaldi A, Zisserman A, et al. Cats and dogs[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE Press, 2012: 3498-3505.
|