[1] BIZUAYEHU H M, AHMED K Y, KIBRET G D, et al. Global disparities of cancer and its projected burden in 2050[J]. JAMA Network Open, 2024, 7(11): e2443198-e2443198.2024, 30(3): 850-862.
[2] 王洋, 袁筑慧, 郑加生, 等. 肝内胆管癌预后评估系统的研究现状及展望[J]. 中国肿瘤临床, 2017, 44(11): 567-570.
WANG Y, YUAN Z H, ZHENG J S, et al. Current status and prospect of prognostic systems for intrahepatic cholangiocarcinoma[J]. Chinese Journal of Clinical Oncology, 2017, 44(11): 567-570. (in Chinese)
[3] WEISS A, CHAVEZ-MACGREGOR M, LICHTENSZTAJN D Y, et al. Validation study of the American Joint Committee on Cancer eighth edition prognostic stage compared with the anatomic stage in breast cancer[J]. JAMA Oncology, 2018, 4(2): 203-209.
[4] DANG C, QI Z, XU T, et al. Deep learning-powered whole slide image analysis in cancer pathology[J]. Laboratory Investigation, 2025, 105(7): 104186.
[5] 金怀平, 陶玉泉, 李振辉, 等. 基于多模态多实例学习的胃癌患者生存预测算法[J]. 计算机辅助设计与图形学学报, 2025, 37(2): 349-360.
JIN H P, TAO Y Q, LI Z H, et al. Survival Prediction Algorithm for Gastric Cancer Patients Based on Multi-Modal Multi-Instance Learning[J]. Journal of Computer-Aided Design & Computer Graphics, 2025, 37(2): 349-360. (in Chinese)
[6] 白日兰, 崔久嵬. 肿瘤异质性-精准临床诊治的挑战[J]. 中国肿瘤临床, 2020, 47(21): 1081-1087.
BAI R L, CUI J W. Tumor heterogeneity:the great challenge in precision clinical diagnosis and treatment[J]. Chinese Journal of Clinical Oncology, 2020, 47(21): 1081–1087. (in Chinese)
[7] YANG H, WANG J, WANG W, et al. MMsurv: a multimodal multi-instance multi-cancer survival prediction model integrating pathological images, clinical information, and sequencing data[J]. Briefings in Bioinformatics, 2025, 26(3): bbaf209.
[8] GAO R, TANG Y, XU K, et al. Lung cancer risk estimation with incomplete data: a joint missing imputation perspective[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2021: 647-656.
[9] GOURD E. Lung cancer treatment compromised by delayed genomic test results[J]. The Lancet Oncology, 2025, 26(4): 420.
[10] WU R, WANG H, CHEN H T, et al. Deep multimodal learning with missing modality: a survey[EB/OL]. (2024-09-15)[2024-11-02].https://arxiv.org/abs/2409.07825.
[11] WANG Y, CUI Z, LI Y. Distribution-consistent modal recovering for incomplete multimodal learning[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2023: 22025-22034.
[12] ILSE M, TOMCZAK J, WELLING M. Attention-based deep multiple instance learning[C]//Proceedings of the 35th International Conference on Machine Learning. [S.l.]: PMLR, 2018: 2127-2136.
[13] LU M Y, WILLIAMSON D F K, CHEN T Y, et al. Data-efficient and weakly supervised computational pathology on whole-slide images[J]. Nature Biomedical Engineering, 2021, 5(6): 555-570.
[14] SHAO Z, BIAN H, CHEN Y, et al. Transmil: Transformer based correlated multiple instance learning for whole slide image classification[C]//Advances in Neural Information Processing Systems. [S.l.]: NeurIPS, 2021, 34: 2136-2147.
[15] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]//Proceedings of the 9th International Conference on Learning Representations. [S.l.]: ICLR, 2021.
[16] ZHANG H, MENG Y, ZHAO Y, et al. Dtfd-mil: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 18802-18812.
[17] BAIR E, TIBSHIRANI R. Semi-supervised methods to predict patient survival from gene expression data[J]. PLoS Biology, 2004, 2(4): e108.
[18] KATZMAN J L, SHAHAM U, CLONINGER A, et al. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network[J]. BMC Medical Research Methodology, 2018, 18(1): 24.
[19] KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[C]//Advances in Neural Information Processing Systems. [S.l.]: NeurIPS, 2017, 30: 971-980.
[20] CHEN R J, LU M Y, WANG J, et al. Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis[J]. IEEE Transactions on Medical Imaging, 2020, 41(4): 757-770.
[21] LI L, PAN H, LIANG Y, et al. PMFN-SSL: Self-supervised learning-based progressive multimodal fusion network for cancer diagnosis and prognosis[J]. Knowledge-Based Systems, 2024, 289: 111502.
[22] ZHAO T, REN Y, LU H, et al. Decision level scheme for fusing multiomics and histology slide images using deep neural network for tumor prognosis prediction[J]. Scientific Reports, 2025, 15(1): 25479.
[23] LE L P, NGUYEN T, RIEGLER M A, et al. Multimodal missing data in healthcare: A comprehensive review and future directions[J]. Computer Science Review, 2025, 56: 100720.
[24] XU Y, ZHOU F, ZHAO C, et al. Distilled Prompt Learning for Incomplete Multimodal Survival Prediction[C] //Proceedings of the Computer Vision and Pattern Recognition Conference. Nashville, USA: IEEE Press, 2025: 5102-5111.
[25] LEE Y L, TSAI Y H, CHIU W C, et al. Multimodal prompting with missing modalities for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada: IEEE Press, 2023: 14943-14952.
[26] HUANG H, ZHOU G, LIU X, et al. Contrastive learning-based computational histopathology predict differential expression of cancer driver genes[J]. Briefings in Bioinformatics, 2022, 23(5): bbac294.
[27] GRAHAM S, VU Q D, RAZA S E A, et al. Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images[J]. Medical Image Analysis, 2019, 58: 101563.
[28] CHEN R J, DING T, LU M Y, et al. Towards a general-purpose foundation model for computational pathology[J]. Nature Medicine, 2024, 30(3): 850-862.
[29] KEREN L, BOSSE M, MARQUEZ D, et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging[J]. Cell, 2018, 174(6): 1373-1387.
[30] COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
[31] ZYPRYCH-WALCZAK J, SZABELSKA A, HANDSCHUH L, et al. The Impact of normalization methods on RNA‐seq data analysis[J]. BioMed Research International, 2015, 2015(1): 621690.
[32] LIBERZON A, BIRGER C, THORVALDSDÓTTIR H, et al. The molecular signatures database hallmark gene set collection[J]. Cell Systems, 2015, 1(6): 417-425.
[33] WEINSTEIN J N, COLLISSON E A, MILLS G B, et al. The cancer genome atlas pan-cancer analysis project[J]. Nature genetics, 2013, 45(10): 1113-1120.
[34] LI B, LI Y, ELICEIRI K W. Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE Press, 2021: 14318-14328.
[35] CHEN R J, LU M Y, WENG W H, et al. Multimodal co-attention transformer for survival prediction in gigapixel whole slide images[C]//Proceedings of the IEEE/CVF International conference on computer vision. Washington D.C., USA: IEEE Press, 2021: 4015-4025.
[36] XU Y, CHEN H. Multimodal optimal transport-based co-attention transformer with global structure consistency for survival prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2023: 21241-21251.
[37] ZHOU F, CHEN H. Cross-modal translation and alignment for survival analysis[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2023: 21485-21494.
[38] ZHOU H, ZHOU F, CHEN H. Cohort-individual cooperative learning for multimodal cancer survival analysis[J]. IEEE Transactions on Medical Imaging, 2024, 43(10): 3388-3400.
[39] JAUME G, VAIDYA A, CHEN R J, et al. Modeling dense multimodal interactions between biological pathways and histology for survival prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2024: 11579-11590.
|