[1] Eggmann F, Blatz M B. Recent advances in intraoral scanners[J]. Journal of Dental Research, 2024, 103(13): 1349-1357.
[2] Gracea R S, Winderickx N, Vanheers M, et al. Artificial intelligence for orthodontic diagnosis and treatment planning: A scoping review[J]. Journal of Dentistry, 2025, 152: 105442.
[3] Róth I, Géczi Z, Végh D C, et al. The role of artificial intelligence in intraoral scanning for complete-arch digital impressions: An in vitro study[J]. Journal of Dentistry, 2025, 156: 105717.
[4] Ruiz D C, Mureșanu S, Du X, et al. Unveiling the role of artificial intelligence applied to clear aligner therapy: A scoping review[J]. Journal of Dentistry, 2025: 105564.
[5] Hayashi A, Fushima K, Arisaka H. Evaluating the long-term stability of a predefined palatal region for tooth movement analysis[J]. Journal of Dentistry, 2024, 149: 105230.
[6] Ye H, Cheng Z, Ungvijanpunya N, et al. Is automatic cephalometric software using artificial intelligence better than orthodontist experts in landmark identification?[J]. BMC Oral Health, 2023, 23(1): 467.
[7] Sarker S, Sarker P, Stone G, et al. A comprehensive overview of deep learning techniques for 3D point cloud classification and semantic segmentation[J]. Machine Vision and Applications, 2024, 35(4): 67.
[8] 金晶,胡楚笛,陈刚.基于多尺度自注意力Transformer的医学图像分割方法[J/OL].计算机工程,2025.
Jin J, Hu C D, Chen G. Medical image segmentation method based on multi-scale self-attention Transformer[J]. Computer Engineering, 2025.
[9] 孙刘杰,翟仁杰,王文举,等.基于3D特征动态融合的点云特征提取网络[J].计算机工程与应用,2023,59(24):209-215.
Sun L J, Zhai R J, Wang W J, et al. Point cloud feature extraction network based on 3D feature dynamic fusion[J]. Computer Engineering and Applications, 2023, 59(24): 209–215.
[10] 但崇鸿,韦洪雷,何舟,等.SRMpose:一种多尺度特征提取的关键点检测算法[J/OL].计算机工程,2025.
Dan C H, Wei H L, He Z, et al. SRMpose: A keypoint detection algorithm based on multi-scale feature extraction[J]. Computer Engineering, 2025.
[11] Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660.
point sets in a metric space[J]. Advances in neural information processing systems, 2017, 30.
[13] Lang Y, Deng H H, Xiao D, et al. DLLNet: an attention-based deep learning method for dental landmark localization on high-resolution 3D digital dental models[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2021: 478-487.
[14] Lang Y, Chen X, Deng H H, et al. DentalPointNet: landmark localization on high-resolution 3D digital dental models[C]//International conference on medical image computing and computer-assisted intervention. Cham: Springer Nature Switzerland, 2022: 444-452.
[15] Wu T H, Lian C, Lee S, et al. Two-stage mesh deep learning for automated tooth segmentation and landmark localization on 3D intraoral scans[J]. IEEE transactions on medical imaging, 2022, 41(11): 3158-3166.
[16] Guo M H, Cai J X, Liu Z N, et al. Pct: Point cloud transformer[J]. Computational visual media, 2021, 7(2): 187-199.
[17] Pan X, Xia Z, Song S, et al. 3d object detection with pointformer[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 7463-7472.
[18] Wu X, Jiang L, Wang P S, et al. Point transformer v3: Simpler faster stronger[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024: 4840-4851.
[19] Park J, Lee S, Kim S, et al. Self-positioning point-based transformer for point cloud understanding[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 21814-21823.
[20] Jin H, Shen Y, Lou J, et al. KeypointDETR: an end-to-end 3D keypoint detector[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 374-390.
[21] Liang D, Zhou X, Xu W, et al. Pointmamba: A simple state space model for point cloud analysis[J]. Advances in neural information processing systems, 2024, 37: 32653-32677.
[22] Gu A, Dao T. Mamba: Linear-time sequence modeling with selective state spaces[J]. arXiv preprint arXiv:2312.00752, 2023.
[23] Han X, Tang Y, Wang Z, et al. Mamba3d: Enhancing local features for 3d point cloud analysis via state space model[C]//Proceedings of the 32nd ACM International Conference on Multimedia. 2024: 4995-5004.
[24] Zhang T, Yuan H, Qi L, et al. Point cloud mamba: Point cloud learning via state space model[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2025, 39(10): 10121-10130.
[25] Zhang G, Fan L, He C, et al. Voxel mamba: Group-free state space models for point cloud based 3d object detection[J]. Advances in Neural Information Processing Systems, 2024, 37: 81489-81509.
[26] 王浩,王珺,胡海峰,等.PMoE:在P-tuning中引入混合专家的参数高效微调框架[J].计算机应用研究,2025,42(07):1956-1963.
Wang H, Wang J, Hu H, et al. PMoE: A parameter-efficient fine-tuning framework introducing mixture of experts into P-tuning[J]. Application Research of Computers, 2025, 42(07): 1956–1963.
[27] Dai D, Deng C, Zhao C, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models[J]. arXiv preprint arXiv:2401.06066, 2024.
[28] Fedus W, Zoph B, Shazeer N. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity[J]. Journal of Machine Learning Research, 2022, 23(120): 1-39.
[29] Lepikhin D, Lee H J, Xu Y, et al. GShard: Scaling giant models with conditional computation and automatic sharding[C]. Proceedings of the 9th International Conference on Learning Representations (ICLR), 2021.
[30] Riquelme C, Puigcerver J, Mustafa B, et al. Scaling vision with sparse mixture of experts[J]. Advances in Neural Information Processing Systems, 2021, 34: 8583-8595.
[31] Fan Z, Sarkar R, Jiang Z, et al. M³vit: Mixture-of-experts vision transformer for efficient multi-task learning with model-accelerator co-design[J]. Advances in Neural Information Processing Systems, 2022, 35: 28441-28457.
[32] Ben-Hamadou A, Neifar N, Rekik A, et al. Teeth3DS+: An extended benchmark for intra-oral 3D scans analysis[J]. arXiv preprint arXiv:2210.06094, 2022.
[33] You Y, Lou Y, Li C, et al. Keypointnet: A large-scale 3d keypoint dataset aggregated from numerous human annotations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 13647-13656.
[34] Wang Y, Cao M, Fan Z, et al. Learning to detect 3D facial landmarks via heatmap regression with graph convolutional network[C]//Proceedings of the AAAI conference on artificial intelligence. 2022, 36(3): 2595-2603.
[35] Zeng Z, Dong M, Zhou J, et al. DeepLA-Net: Very Deep Local Aggregation Networks for Point Cloud Analysis[C]//Proceedings of the Computer Vision and Pattern Recognition Conference. 2025: 1330-1341.
|