[1] Liu Q, Li Z, Zhang L, et al. MSCD-YOLO: A Lightweight Dense Pedestrian Detection Model with Finer-Grained Feature Information Interaction[J]. Sensors, 2025, 25(2): 438.
[2] Li N, Bai X, Shen X, et al. Dense pedestrian detection based on GR-YOLO[J]. Sensors, 2024, 24(14): 4747.
[3] Fang Y, Pang H. An improved pedestrian detection model based on YOLOv8 for dense scenes[J]. Symmetry, 2024, 16(6): 716.
[4] Han W, He N. YOLO-Human: A Simple and Effective Anchor-free Network for Dense Pedestrian Detection[C]//2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML). IEEE, 2024: 1950-1953.
[5] Cai Z, Vasconcelos N. Cascade r-cnn: Delving into high quality object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 6154-6162.
[6] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(6): 1137-1149.
[7] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox de
[8] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
[9] 胡倩,皮建勇,胡伟超,等. 基于改进YOLOv5的密集行人检测算法[J/OL]. 计算机工程, 2025, 51(3): 216-228.
Hu Qian, Pi Jianyong, Hu Weichao, et al. Dense Pedestrian Detection Algorithm Based on Improved YOLOv5 [J/OL]. Computer Engineering, 2025, 51(3): 216-228.
[10] 高昂,梁兴柱,夏晨星,等. 一种改进YOLOv8的密集行人检测算法[J]. 图学学报, 2023, 44(5): 890-898.
Gao Ang, Liang Xingzhu, Xia Chenxing, et al. An Improved YOLOv8 Algorithm for Dense Pedestrian Detection[J]. Journal of Graphics, 2023, 44(5): 890-898.
[11] 陈汝熠,闫河,王艳,等. SLAW- YOLOv8:一种密集行人检测方法[J/OL]. 小型微型计算机系统, 2025[2025-07-17].
Chen Ruyi, Yan He, Wang Yan, et al. SLAW-YOLOv8: A Dense Pedestrian Detection Method [J/OL]. Small & Micro Computer System, 2025 [2025-07-17].
[12] 陈海秀,陈子昂,宁馨,等. 改进YOLOv10n的密集行人小目标检测方法[J/OL]. 小型微型计算机系统, 2025[2025-07-17].
Chen Haixiu, Chen Ziang, Ning Xin, et al. An Improved Method for Dense Small Pedestrian Target Detection Based on YOLOv10n [J/OL]. Journal of Chinese Computer Systems, 2025 [2025-07-17].
[13] Sapkota R, Flores-Calero M, Qureshi R, et al. YOLO advances to its genesis: a decadal and comprehensive review of the You Only Look Once (YOLO) series[J]. Artificial Intelligence Review, 2025, 58(9): 274.
[14] Zhong J, Chen J, Mian A. DualConv: Dual convolutional kernels for lightweight deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(11): 9528-9535.
[15] Wang A, Chen H, Lin Z, et al. Repvit: Revisiting mobile cnn from vit perspective[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024: 15909-15920.
[16] Qin X, Li N, Weng C, et al. Simple attention module based speaker verification with iterative noisy label detection[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 6722-6726.
[17] Narayanan M. SENetV2: Aggregated dense layer for channelwise and global representations[J]. arXiv preprint arXiv:2311.10807, 2023.
[18] Zhang S, Xie Y, Wan J, et al. Widerperson: A diverse dataset for dense pedestrian detection in the wild[J]. IEEE Transactions on Multimedia, 2019, 22(2): 380-393.
[19] Shao S, Zhao Z, Li B, et al. Crowdhuman: A benchmark for detecting human in a crowd[J]. arXiv preprint arXiv:1805.00123, 2018.
[20] Yu F, Chen H, Wang X, et al. Bdd100k: A diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 2636-2645.
[21] Vasanthi P, Mohan L. Efficient YOLOv8 algorithm for extreme small-scale object detection[J]. Digital Signal Processing, 2024, 154: 104682.
[22] Cheng T, Song L, Ge Y, et al. Yolo-world: Real-time open-vocabulary object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024: 16901-16911.
[23] Wang C Y, Yeh I H, Mark Liao H Y. Yolov9: Learning what you want to learn using programmable gradient information[C]//European conference on computer vision. Cham: Springer Nature Switzerland, 2024: 1-21.
[24] Wang A, Chen H, Liu L, et al. Yolov10: Real-time end-to-end object detection[J]. Advances in Neural Information Processing Systems, 2024, 37: 107984-108011.
[25] 黄昆,齐肇建,王娟敏,等.基于改进YOLOv8的密集行人检测模型[J].计算机工程,2025,51(05):133-142.
Huang Kun, Qi Zhaojian, Wang Juamin, et al. Dense Pedestrian Detection Model Based on Improved YOLOv8 [J]. Computer Engineering, 2025, 51(05): 133-142.
[26] 杨迪,张喜龙,王鹏.LDD-YOLO:改进YOLOv8的轻量级密集行人检测算法[J/OL].计算机科学与探索,1-17[2025-10-22].
Yang Di, Zhang Xilong, Wang Peng. LDD-YOLO: A Lightweight and Dense Pedestrian Detection Algorithm Improving YOLOv8 [J/OL]. Computer Science and Exploration, 1-17 [2025-10-22].
[27] Zhang Z, Li W, Luo L. YOLO-GSD: a real-time pedestrian detection algorithm based on YOLOv8 in dense environments[J]. Journal of Real-Time Image Processing, 2025, 22(6): 1-15.
[28] Li N, Bai X, Shen X, et al. Dense pedestrian detection based on GR-YOLO[J]. Sensors, 2024, 24(14): 4747.
[29] Yang G, Lei J, Zhu Z, et al. AFPN: Asymptotic feature pyramid network for object detection[C]//2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2023: 2184-2189.
[30] Li H, Li J, Wei H, et al. Slim-neck by GSConv: A lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing, 2024, 21(3): 62.
[31] Finder S E, Amoyal R, Treister E, et al. Wavelet convolutions for large receptive fields[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 363-380.
|