[1] 梁天恺,曾碧,陈光. 联邦学习综述:概念、技术、应用与挑战[J].计算机应用,2022,42(12):3651-3662.LIANG Tiankai, ZENG Bi, CHEN Guang. Survey of federated learning:Concept, technology, application and challenge[J]. Journal of Computer Applications, 2022, 42(12): 3651-3662.
[2] Yan P, Wang H, Song T, et al. SkyMask: Attack-agnostic robust federated learning with fine-grained learnable masks[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 291-308.
[3] Zhang Z, Cao X, Jia J, et al. Fldetector: Defending federated learning against model poisoning attacks via detecting malicious clients[C]//Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining. 2022: 2545-2555.
[4] Cai H, Bian C, Sheng B, et al. QuoTa: An online quality-aware incentive mechanism for fast federated learning[J]. Applied Sciences, 2024, 14(2).
[5] Lyu L, Yu J, Nandakumar K, et al. Towards fair and privacy-preserving federated deep models[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(11): 2524-2541.
[6] Yli-Huumo J, Ko D, Choi S, et al. Where is current research on blockchain technology?—a systematic review[J]. PloS one, 2016, 11(10): e0163477.
[7] 李凌霄, 袁莎, 金银玉. 基于区块链的联邦学习技术综述 [J]. 计算机应用研究, 2021, 38 (11): 3222-3230. Li Lingxiao, Yuan Sha, Jin Yinyu. Review of blockchain-based federated learning [J]. Application Research of Computers, 2021, 38 (11): 3222-3230.
[8] Gao H, Pan X, Zhang X, et al. Towards trustworthy federated learning: a blockchain-based architecture for auditing, traceability, and verification[C]//Fourth International Conference on Computer Science and Communication Technology (ICCSCT 2023). SPIE, 2023, 12918: 580-590.
[9] 李程, 袁勇, 郑志勇, 杨东, 王飞跃. 基于区块链的联邦学习: 模型、方法与应用. 自动化学报, 2024, 50(6): 1059−1085.LI Cheng, YUAN Yong, ZHENG Zhiyong, YANG Dong, WANG Feiyue. Blockchain-enabled federated learning: Models, methods and applications[J]. Acta Automatica Sinica, 2024, 50(6): 1059-1085.
[10] 乔少杰, 林羽丰, 韩楠, 等. 基于贡献度证明共识机制的去中心化联邦学习框架[J]. 软件学报, 2022, 34(3): 1148-1167.Qiao SJ, Lin YF, Han N, Yang GP, Li H, Yuan G, Mao R, Yuan CA, Louis AG. Decentralized Federated Learning Framework Based on Proof-of-contribution Consensus Mechanism. Journal of Software, 2023, 34(3): 1148-1167.
[11] Dong N, Wang Z, Sun J, et al. Defending against poisoning attacks in federated learning with blockchain[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(7): 3743-3756.
[12] Nguyen T, Thai P, Tre’R J, et al. Blockchain-based secure client selection in federated learning[C]//2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 2022: 1-9.
[13] Abou El Houda Z, Moudoud H, Brik B, et al. Securing federated learning through blockchain and explainable AI for robust intrusion detection in IoT networks[C]//IEEE INFOCOM 2023-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2023: 1-6.
[14] Chen H, Asif SA, Park J, Shen CC, Bennis M. Robust block chained federated learning with model validation and proof-of-stake inspired consensus. In: Proc. of the 35th AAAI Conf. on Artificial Intelligence. AAAI, 2021. 1−9.
[15] Yu F, Lin H, Wang X, et al. Blockchain-empowered secure federated learning system: Architecture and applications[J]. Computer Communications, 2022, 196: 55-65.
[16] Dinh T T A, Liu R, Zhang M, et al. Untangling blockchain: A data processing view of blockchain systems[J]. IEEE transactions on knowledge and data engineering, 2018, 30(7): 1366-1385.
[17] WANG J, WANG H. Monoxide: Scale-out blockchains with asynchronous consensus zones[C]//Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation. Berkeley, CA, USA: USENIX Association, 2019: 95-112.
[18] Comer D E. Internetworking with tcp/ip vol i: Principles[J]. Protocols, and Architecture, 1995.
[19] Zhou X, Cheng N, Shen J, et al. FedSW: A Sliding Window-Based Approach for Asynchronous Federated Learning in WiFi Networks[C]//GLOBECOM 2024-2024 IEEE Global Communications Conference. IEEE, 2024: 800-805.
[20] Ren S, Kim E, Lee C. A scalable blockchain-enabled federated learning architecture for edge computing[J]. Plos one, 2024, 19(8): e0308991.
[21] JIN R, HU J, MIN G, et al. Lightweight blockchain-empowered secure and efficient federated edge learning[J]. IEEE Transactions on Computers, 2023, 72(11): 3314-3325.
[22] AZIZ G, MISTRY S, KRISHNA A. VBSFL: a robust blockchained split-fed learning model for secured distributed learning[J]. IEEE Transactions on Industrial Informatics,2025,21(7):5431-5439.
[23] LeCun Y. The MNIST database of handwritten digits [J/OL].1998[2021-06-15].
[24] CALDAS S, DUDDU S M K, WU P, et al. LEAF: A benchmark for federated settings[C]//Proceedings of the 1st International Workshop on Federated Learning for User Privacy and Data Confidentiality. 2019.
[25] Xiao H, Rasul K, Vollgraf R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms[J]. arXiv preprint arXiv:1708.07747, 2017.
[26] Krizhevsky A, Hinton G. Convolutional deep belief networks on cifar-10[J]. Unpublished manuscript, 2010, 40(7): 1-9.
[27] GO A, BHAYANI R, HUANG L. Twitter sentiment classification using distant supervision[R]. Stanford: Stanford University, 2009.
[28] Qu XD, Wang SL, Hu Q, Cheng XZ. Proof of federated learning: A novel energy-recycling consensus algorithm. IEEE Trans. on Parallel Distributed Systems, 2021, 32(8): 2074−2085.
[29] Yu J, Zhou R, Chen C, et al. Asfl: Adaptive semi-asynchronous federated learning for balancing model accuracy and total latency in mobile edge networks[C]//Proceedings of the 52nd International Conference on Parallel Processing. 2023: 443-451.
|