Abstract:
A Gaussian Fields(GF) on nearest neighbor graph is defined by using a non-parametric technique. On the basis of it, a MAP criterion which can automatically set model parameter and numbers of nearest-neighbor k is proposed and entropy maximization query selection method for active learning by using supervised and unsupervised information is specified. Experimental results demonstrate effectiveness of GF compared with semi-active learning method.
Key words:
Gaussian fields(GF),
semi-supervised regression,
active learning,
entropy,
Cholesky decomposition
摘要: 介绍一种定义近邻图上的高斯域(GF)及用于降维和分类的GF的相关知识,提出一种用于半监督回归的高斯域,能自动设置模型参数和近邻数,利用监督和无监督数据进行熵值查询选择从而进行主动学习。实验将其与半监督学习法进行比较并验证了GF的有效性。
关键词:
高斯域,
半监督回归,
主动学习,
熵,
Cholesky分解
CLC Number:
CUI Peng; ZHANG Ru-bo. Semi-Supervised Regression and Active Learning with GF[J]. Computer Engineering, 2009, 35(15): 187-189.
崔 鹏;张汝波. 利用高斯域的半监督回归和主动学习[J]. 计算机工程, 2009, 35(15): 187-189.