| 1 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84- 90.  doi: 10.1145/3065386
 | 
																													
																							| 2 |  | 
																													
																							| 3 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1-9. | 
																													
																							| 4 |  | 
																													
																							| 5 | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. New York, USA: ACM Press, 2017: 4278-4284. | 
																													
																							| 6 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778. | 
																													
																							| 7 | HAN S, MAO H Z, DALLY W J. Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. Fiber, 2015, 56(4): 3- 7. | 
																													
																							| 8 | CARREIRA-PERPINAN M A, IDELBAYEV Y. "Learning-Compression" algorithms for neural net pruning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8532-8541. | 
																													
																							| 9 | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278- 2323.  doi: 10.1109/5.726791
 | 
																													
																							| 10 | LUO J H, WU J, LIN W. ThiNet: a filter level pruning method for deep neural network compression[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 5068-5076. | 
																													
																							| 11 | DONG X, CHEN S Y, PAN S J. Learning to prune deep neural networks via layer-wise optimal brain surgeon[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 4860-4874. | 
																													
																							| 12 | MITTAL D, BHARDWAJ S, KHAPRA M M, et al. Studying the plasticity in deep convolutional neural networks using random pruning. Machine Vision and Applications, 2019, 30(2): 203- 216.  doi: 10.1007/s00138-018-01001-9
 | 
																													
																							| 13 | YANG T J, CHEN Y H, SZE V. Designing energy-efficient convolutional neural networks using energy-aware pruning[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6071-6079. | 
																													
																							| 14 |  | 
																													
																							| 15 | MOLCHANOV P, TYREE S, KARRAS T, et al. Pruning convolutional neural networks for resource efficient transfer learning[C]//Proceedings of the 5th International Conference on Learning Representations. [S. l. ]: ICLR, 2017: 1-17. | 
																													
																							| 16 | 耿丽丽, 牛保宁. 深度神经网络模型压缩综述. 计算机科学与探索, 2020, 14(9): 1441- 1455.  URL
 | 
																													
																							|  | GENG L L, NIU B N. Survey of deep neural networks model compression. Journal of Frontiers of Computer Science and Technology, 2020, 14(9): 1441- 1455.  URL
 | 
																													
																							| 17 | LI H, KADAV A, DURDANOVIC I, et al. Pruning filters for efficient ConvNets[C]//Proceedings of International Conference on Learning Representations. [S. l. ]: ICLR, 2017: 1-13. | 
																													
																							| 18 |  | 
																													
																							| 19 | HU H, PENG R, TAI Y W, et al. Network trimming: a data-driven neuron pruning approach towards efficient deep architectures[EB/OL]. [2023-07-10]. https://arxiv.org/abs/1607.03250v1 . | 
																													
																							| 20 | SINGH P, VERMA V K, RAI P, et al. Leveraging filter correlations for deep model compression[C]//Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2020: 824-833. | 
																													
																							| 21 | ADAMCZEWSKI K, PARK M J. Dirichlet pruning for convolutional neural networks[C]//Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. Washington D. C., USA: IEEE Press, 2021: 3637-3645. | 
																													
																							| 22 | GENG L L, NIU B N. Pruning convolutional neural networks via filter similarity analysis. Machine Learning, 2022, 111(9): 3161- 3180.  doi: 10.1007/s10994-022-06193-w
 | 
																													
																							| 23 | 周林勇, 谢晓尧, 刘志杰, 等. 卷积神经网络池化方法研究. 计算机工程, 2019, 45(4): 211- 216.  URL
 | 
																													
																							|  | ZHOU L Y, XIE X Y, LIU Z J, et al. Research on pooling method of convolution neural network. Computer Engineering, 2019, 45(4): 211- 216.  URL
 | 
																													
																							| 24 | BUBECK S, SELLKE M. A universal law of robustness via isoperimetry. Journal of the ACM, 70(2): 10. | 
																													
																							| 25 |  | 
																													
																							| 26 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 248-255. | 
																													
																							| 27 | DONG X, CHEN S Y, PAN S J. Learning to prune deep neural networks via layer-wise optimal brain surgeon[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 4860-4874. | 
																													
																							| 28 | LIN S H, JI R R, YAN C Q, et al. Towards optimal structured CNN pruning via generative adversarial learning[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 2785-2094. | 
																													
																							| 29 |  |