Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2010, Vol. 36 ›› Issue (22): 158-159.

• Networks and Communications • Previous Articles     Next Articles

Research on Immunization Strategy for Weighted Scale-free Network

LI Tian-huaa, ZOU Yan-lib, TANG Xian-jiana, CHEN Chaoa, OU Qi-biaob   

  1. (a. College of Physics and Technology; b. College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China)
  • Online:2010-11-20 Published:2010-11-18

加权无标度网络的免疫策略研究

李天华a,邹艳丽b,唐贤健a,陈 超a,欧启标b   

  1. (广西师范大学 a. 物理科学与技术学院;b. 电子工程学院,广西 桂林 541004)
  • 作者简介:李天华(1977-),男,硕士研究生,主研方向:复杂网络;邹艳丽,副教授、博士;唐贤健、陈 超,硕士研究生;欧启标,研究员、硕士
  • 基金资助:
    国家自然科学基金资助项目(10647001);广西自然科学基金资助项目(桂科青0728042);广西高校优秀人才基金资助项目(RC 2007006)

Abstract: This paper uses two kinds of infection mechanisms including the same infection probability of all nodes and different infection probability according to different edge weight of nodes adopted to BBV weighted network for immunization simulation. Study finds the nodes betweenness-first immunization effect is better than the intensity-first immune which is widely used at present, the edge betweenness-first immunization strategy is better than the other edge-immunization strategy. It adopts the different immunization strategy under the different infection mechanism, and gets the different effect. It is more effective to control the increase speed of virus at the first stage when adopts different infection probability according to different edge weight of nodes.

Key words: complex network, weighted network, infection mechanism, immunization strategy, simulation

摘要: 基于所有节点采用相同感染概率和根据节点边权采用不同感染概率这2种感染机制对BBV加权网络进行免疫仿真。仿真结果表明,节点介数优先免疫的效果优于目前普遍采用的强度优先免疫,边介数优先免疫策略也优于其他边免疫策略。根据节点边权采用不同感染概率对边权大的边进行免疫,可有效控制病毒在感染初期的增长速度。

关键词: 复杂网络, 加权网络, 感染机制, 免疫策略, 仿真

CLC Number: