1 |
张龙, 张号, 王朝兵, 等. 显式动力学驱动的轴承变工况故障诊断方法. 中国机械工程, 2023, 34 (8): 982- 992.
doi: 10.3969/j.issn.1004-132X.2023.08.013
|
|
ZHANG L , ZHANG H , WANG C B , et al. Explicit dynamics driving fault diagnosis method for bearing variable conditions. China Mechanical Engineering, 2023, 34 (8): 982- 992.
doi: 10.3969/j.issn.1004-132X.2023.08.013
|
2 |
VRIGNAT P , KRATZ F , AVILA M . Sustainable manufacturing, maintenance policies, prognostics and health management: a literature review. Reliability Engineering & System Safety, 2022, 218, 108140.
doi: 10.1016/j.ress.2021.108140
|
3 |
LI X C , DUAN F , MBA D , et al. Multidimensional prognostics for rotating machinery: a review. Advances in Mechanical Engineering, 2017, 9 (2): 11- 16.
doi: 10.1177/1687814016685004
|
4 |
SI X S , WANG W B , HU C H , et al. Remaining useful life estimation-a review on the statistical data driven approaches. European Journal of Operational Research, 2011, 213 (1): 1- 14.
doi: 10.1016/j.ejor.2010.11.018
|
5 |
CUI L L , WANG X , XU Y G , et al. A novel switching unscented Kalman filter method for remaining useful life prediction of rolling bearing. Measurement, 2019, 135, 678- 684.
doi: 10.1016/j.measurement.2018.12.028
|
6 |
KEDADOUCHE M , THOMAS M , TAHAN A . A comparative study between Empirical wavelet transforms and Empirical mode decomposition methods: application to bearing defect diagnosis. Mechanical Systems and Signal Processing, 2016, 81, 88- 107.
doi: 10.1016/j.ymssp.2016.02.049
|
7 |
BARUAH P , CHINNAM R B . HMMs for diagnostics and prognostics in machining processes. International Journal of Production Research, 2005, 43 (6): 1275- 1293.
doi: 10.1080/00207540412331327727
|
8 |
SUN F Q , WANG N , LI X Y , et al. Remaining useful life prediction for a machine with multiple dependent features based on Bayesian dynamic linear model and copulas. IEEE Access, 2017, 5, 16277- 16287.
doi: 10.1109/ACCESS.2017.2735966
|
9 |
PANDIYAN V , CAESARENDRA W , TJAHJOWIDODO T , et al. In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. Journal of Manufacturing Processes, 2018, 31, 199- 213.
doi: 10.1016/j.jmapro.2017.11.014
|
10 |
CHEN F F , CHENG M T , TANG B P , et al. A novel optimized multi-kernel relevance vector machine with selected sensitive features and its application in early fault diagnosis for rolling bearings. Measurement, 2020, 156, 107583.
doi: 10.1016/j.measurement.2020.107583
|
11 |
金柱璋, 方旭源, 黄彦慧, 等. 基于深度度量学习的卫星云图检索. 光电工程, 2022, 49 (4): 210307.
doi: 10.12086/oee.2022.210307
|
|
JIN Z Z , FANG X Y , HUANG Y H , et al. Satellite cloud image retrieval based on deep metric learning. Opto-Electronic Engineering, 2022, 49 (4): 210307.
doi: 10.12086/oee.2022.210307
|
12 |
姚德臣, 李博阳, 刘恒畅, 等. 基于注意力GRU算法的滚动轴承剩余寿命预测. 振动与冲击, 2021, 40 (17): 116- 123.
doi: 10.13465/j.cnki.jvs.2021.17.016
|
|
YAO D C , LI B Y , LIU H C , et al. Residual life prediction of rolling bearing based on attention GRU algorithm. Journal of Vibration and Shock, 2021, 40 (17): 116- 123.
doi: 10.13465/j.cnki.jvs.2021.17.016
|
13 |
ZHAO R , YAN R Q , WANG J J , et al. Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors, 2017, 17 (2): 273.
doi: 10.3390/s17020273
|
14 |
QIN Y , XIANG S , CHAI Y , et al. Macroscopic-microscopic attention in LSTM networks based on fusion features for gear remaining life prediction. IEEE Transactions on Industrial Electronics, 2020, 67 (12): 10865- 10875.
doi: 10.1109/TIE.2019.2959492
|
15 |
WANG B , LEI Y G , YAN T , et al. Recurrent convolutional neural network: a new framework for remaining useful life prediction of machinery. Neurocomputing, 2020, 379, 117- 129.
doi: 10.1016/j.neucom.2019.10.064
|
16 |
董绍江, 朱朋, 朱孙科, 等. 基于仿真数据驱动和领域自适应的滚动轴承故障诊断方法. 中国机械工程, 2023, 34 (6): 694- 702.
doi: 10.3969/j.issn.1004-132X.2023.06.008
|
|
DONG S J , ZHU P , ZHU S K , et al. Fault diagnosis method of rolling bearings based on simulation data drive and domain adaptation. China Mechanical Engineering, 2023, 34 (6): 694- 702.
doi: 10.3969/j.issn.1004-132X.2023.06.008
|
17 |
BENJAMIN S, DAVID V, CAMPENHOUT V, et al. An overview of reservoir com-puting: theory, applications and implementations[C]//Proceedings of the 15th European Symposium on Artificial Neural Networks. Berlin, Germany: Springer, 2007: 471-482.
|
18 |
GALLICCHIO C , MICHELI A . Tree echo state networks. Neurocomputing, 2013, 101, 319- 337.
doi: 10.1016/j.neucom.2012.08.017
|
19 |
NECTOUX P, GOURIVEAU R, MEDIAHER K, et al. PRONOSTIA: an experimental platform for bearingac-celerated degradation tests[C]//Proceedings of IEEE International Conference on Prognostics and Health Management. Washington D. C., USA: IEEE Press, 2012: 11-17.
|
20 |
HINCHI A Z , TKIOUAT M . Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network. Procedia Computer Science, 2018, 127, 123- 132.
doi: 10.1016/j.procs.2018.01.106
|
21 |
LEI Y G , LI N P , GONTARZ S , et al. A model-based method for remaining useful life prediction of machinery. IEEE Transactions on Reliability, 2016, 65 (3): 1314- 1326.
doi: 10.1109/TR.2016.2570568
|
22 |
HONG S , ZHOU Z , ZIO E , et al. Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method. Digital Signal Processing, 2014, 27, 159- 166.
doi: 10.1016/j.dsp.2013.12.010
|
23 |
CHEN Y H , PENG G L , ZHU Z Y , et al. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction. Applied Soft Computing, 2020, 86, 105919.
doi: 10.1016/j.asoc.2019.105919
|
24 |
WANG B , LEI Y G , LI N P , et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings. IEEE Transactions on Reliability, 2020, 69 (1): 401- 412.
doi: 10.1109/TR.2018.2882682
|
25 |
张龙, 胡燕青, 赵丽娟, 等. 多通道信息融合与深度迁移学习的旋转机械故障诊断. 中国机械工程, 2023, 34 (8): 966- 975.
doi: 10.3969/j.issn.1004-132X.2023.08.011
|
|
ZHANG L , HU Y Q , ZHAO L J , et al. Multichannel information fusion and deep transfer learning for rotating machinery fault diagnosis. China Mechanical Engineering, 2023, 34 (8): 966- 975.
doi: 10.3969/j.issn.1004-132X.2023.08.011
|
26 |
赵靖, 杨绍普, 李强, 等. 一种残差注意力迁移学习方法及其在滚动轴承故障诊断中的应用. 中国机械工程, 2023, 34 (3): 332- 343.
doi: 10.3969/j.issn.1004-132X.2023.03.010
|
|
ZHAO J , YANG S P , LI Q , et al. A new transfer learning method with residual attention and its applications on rolling bearing fault diagnosis. China Mechanical Engineering, 2023, 34 (3): 332- 343.
doi: 10.3969/j.issn.1004-132X.2023.03.010
|