Abstract:
Aiming at the recognition of abnormal data flows, this paper proposes an establishment method of K layers abnormal features model based on NetFlow, whose conception is described in detail, in addition to its realizable method. It updates the data of K layers features pattern and adjusts their multilayer PRI. Experimental result shows the method can quickly detect abnormal net-flows, obviously reduce the matching times and improve matching efficiency.
Key words:
flow analysis,
anomaly detection,
features model
摘要: 针对异常数据流的识别问题,提出基于NetFlow的动态K层特征模型库建立方法。描述动态K层异常特征模型的概念,建立K层特征模型库,更新K层特征模型表中的数据,调整分层优先级别。实验结果表明,该方法能快速识别异常数据流,有效减少匹配次数,提高匹配效率。
关键词:
流量分析,
异常检测,
特征模型
CLC Number:
ZHENG Jian-Zhong, ZHOU Shi-Jie, WANG Juan. Establishment of Dynamic K Layers Features Model Library Based on NetFlow[J]. Computer Engineering, 2010, 36(22): 165-167.
郑建忠, 周世杰, 王娟. 基于NetFlow的动态K层特征模型库建立[J]. 计算机工程, 2010, 36(22): 165-167.