| 1 | 王青, 孙頔, 张海霞, 等. 中国光伏行业2021年回顾与2022年展望. 电气时代, 2022,(5): 20- 28. | 
																													
																							|  | WANG Q, SUN D, ZHANG H X, et al. Review of photovoltaic industry in China in 2021 and prospect for 2022. Electric Age, 2022,(5): 20- 28. | 
																													
																							| 2 | HONG Y Y, PULA R A. Methods of photovoltaic fault detection and classification: a review. Energy Reports, 2022, 8, 5898- 5929.  doi: 10.1016/j.egyr.2022.04.043
 | 
																													
																							| 3 | LIVERA A, THERISTIS M, MAKRIDES G, et al. Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems. Renewable Energy, 2019, 133, 126- 143.  doi: 10.1016/j.renene.2018.09.101
 | 
																													
																							| 4 | TSANAKAS J A, HA L, BUERHOP C. Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: a review of research and future challenges. Renewable and Sustainable Energy Reviews, 2016, 62, 695- 709.  doi: 10.1016/j.rser.2016.04.079
 | 
																													
																							| 5 | ALIPPI C, NTALAMPIRAS S, ROVERI M. Model-free fault detection and isolation in large-scale cyber-physical systems. IEEE Transactions on Emerging Topics in Computational Intelligence, 2017, 1(1): 61- 71.  doi: 10.1109/TETCI.2016.2641452
 | 
																													
																							| 6 | QU J, QIAN Z, PEI Y, et al. An unsupervised hourly weather status pattern recognition and blending fitting model for PV system fault detection. Applied Energy, 2022, 319, 119271.  doi: 10.1016/j.apenergy.2022.119271
 | 
																													
																							| 7 | LI B, DELPHA C, DIALLO D, et al. Application of artificial neural networks to photovoltaic fault detection and diagnosis: a review. Renewable and Sustainable Energy Reviews, 2021, 138, 110512.  doi: 10.1016/j.rser.2020.110512
 | 
																													
																							| 8 | DE BENEDETTI M, LEONARDI F, MESSINA F, et al. Anomaly detection and predictive maintenance for photovoltaic systems. Neurocomputing, 2018, 310, 59- 68.  doi: 10.1016/j.neucom.2018.05.017
 | 
																													
																							| 9 | WANG K, QI X, LIU H. Photovoltaic power forecasting based LSTM-convolutional network. Energy, 2019, 189, 116225.  doi: 10.1016/j.energy.2019.116225
 | 
																													
																							| 10 | CHOUDER A, SILVESTRE S. Automatic supervision and fault detection of PV systems based on power losses analysis. Energy Conversion and Management, 2010, 51(10): 1929- 1937.  doi: 10.1016/j.enconman.2010.02.025
 | 
																													
																							| 11 | MIAO S, NING G, GU Y, et al. Markov chain model for solar farm generation and its application to generation performance evaluation. Journal of Cleaner Production, 2018, 186, 905- 917.  doi: 10.1016/j.jclepro.2018.03.173
 | 
																													
																							| 12 | AGOUA X G, GIRARD R, KARINIOTAKIS G. Short-term spatio-temporal forecasting of photovoltaic power production. IEEE Transactions on Sustainable Energy, 2018, 9(2): 538- 546.  doi: 10.1109/TSTE.2017.2747765
 | 
																													
																							| 13 | GAROUDJA E, HARROU F, SUN Y, et al. Statistical fault detection in photovoltaic systems. Solar Energy, 2017, 150, 485- 499.  doi: 10.1016/j.solener.2017.04.043
 | 
																													
																							| 14 | ZHU X, DANG Y, DING S. Using a self-adaptive grey fractional weighted model to forecast Jiangsu's electricity consumption in China. Energy, 2020, 190, 116417.  doi: 10.1016/j.energy.2019.116417
 | 
																													
																							| 15 | WANG J Y, QIAN Z, ZAREIPOUR H, et al. Performance assessment of photovoltaic modules based on daily energy generation estimation. Energy, 2018, 165, 1160- 1172.  doi: 10.1016/j.energy.2018.10.047
 | 
																													
																							| 16 | POLO F A O, BERMEJO J F, FERNÁNDEZ J F G, et al. Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models. Renewable Energy, 2015, 81, 227- 238.  doi: 10.1016/j.renene.2015.03.023
 | 
																													
																							| 17 | HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903- 995.  doi: 10.1098/rspa.1998.0193
 | 
																													
																							| 18 | SMITH J S. The local mean decomposition and its application to EEG perception data. Journal of the Royal Society Interface, 2005, 2(5): 443- 454.  doi: 10.1098/rsif.2005.0058
 | 
																													
																							| 19 | LIU D, NIU D, WANG H, et al. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renewable Energy, 2014, 62, 592- 597.  doi: 10.1016/j.renene.2013.08.011
 | 
																													
																							| 20 | NAZARI M, SAKHAEI S M. Successive variational mode decomposition. Signal Processing, 2020, 174, 107610.  doi: 10.1016/j.sigpro.2020.107610
 | 
																													
																							| 21 | LIU H, MI X, LI Y. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Conversion and Management, 2018, 159, 54- 64.  doi: 10.1016/j.enconman.2018.01.010
 | 
																													
																							| 22 | DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition. IEEE Transactions on Signal Processing, 2014, 62(3): 531- 544.  doi: 10.1109/TSP.2013.2288675
 | 
																													
																							| 23 | ZHAO Y, LI C, FU W, et al. A modified variational mode decomposition method based on envelope nesting and multi-criteria evaluation. Journal of Sound and Vibration, 2020, 468, 115099.  doi: 10.1016/j.jsv.2019.115099
 | 
																													
																							| 24 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9(8): 1735- 1780.  doi: 10.1162/neco.1997.9.8.1735
 | 
																													
																							| 25 | SIAMI-NAMINI S, TAVAKOLI N, NAMIN A S. The performance of LSTM and BiLSTM in forecasting time series[C]//Proceedings of 2019 IEEE International Conference on Big Data. Washington D. C., USA: IEEE Press, 2019: 3285-3292. | 
																													
																							| 26 | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 785-794. | 
																													
																							| 27 | NIU D, YU M, SUN L, et al. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism. Applied Energy, 2022, 313, 118801.  doi: 10.1016/j.apenergy.2022.118801
 | 
																													
																							| 28 | MIRJALILI S, LEWIS A. The whale optimization algorithm. Advances in Engineering Software, 2016, 95, 51- 67.  doi: 10.1016/j.advengsoft.2016.01.008
 | 
																													
																							| 29 | ZHANG H, TANG L, YANG C, et al. Locating electric vehicle charging stations with service capacity using the improved whale optimization algorithm. Advanced Engineering Informatics, 2019, 41, 100901.  doi: 10.1016/j.aei.2019.02.006
 | 
																													
																							| 30 | LI J H, GUO H. A hybrid whale optimization algorithm for plane block parallel blocking flowline scheduling optimization with deterioration effect in lean shipbuilding. IEEE Access, 2021, 9, 131893- 131905.  doi: 10.1109/ACCESS.2021.3112742
 |