Abstract:
This paper studies eXtensible Markup Language(XML) document classification method based on Extreme Learning Machine(ELM). On the basis of Structured Link Vector Model(SLVM), an optimized Reduced Structured Vector Space Model(RS-VSM) is proposed to incorporate structural information into feature vectors more efficiently. It applies ELM in the XML document classification to achieve good performance at extremely high speed. A voting-ELM algorithm is proposed to improve accuracy of ELM classifiers. Experimental results demonstrate that the voting-ELM classifiers can achieve better performance.
Key words:
eXtensible Markup Language(XML),
classification,
Extreme Learning Machine(ELM),
Structured Link Vector Model(SLVM),
voting mechanism
摘要: 研究基于极限学习机(ELM)的XML文档分类方法。为优化文档的相似性计算,在结构链接向量模型的基础上,提出一种改进的特征向量模型RS-VSM,将有效的结构化信息合并到向量模型中。应用ELM对XML文档进行分类,为提高ELM分类的准确率,提出一种基于投票机制的Voting-ELM算法。实验结果证明,该算法的分类效果较优。
关键词:
可扩展标记语言,
分类,
极限学习机,
结构链接向量模型,
投票机制
CLC Number:
CHEN Cheng-Shuang. XML Document Classification Based on Extreme Learning Machine[J]. Computer Engineering, 2011, 37(19): 177-178,182.
陈盛双. 基于极限学习机的XML文档分类[J]. 计算机工程, 2011, 37(19): 177-178,182.