1 |
PENG H, LI H R, SONG Y Q, et al. Differentially private federated knowledge graphs embedding[C]//Proceedings of the 30th ACM International Conference on Information [WT《Times New Roman》]& Knowledge Management. New York, USA: ACM Press, 2021: 1416-1425.
|
2 |
|
3 |
MA Y P , TRESP V , DAXBERGER E A . Embedding models for episodic knowledge graphs. Journal of Web Semantics, 2019, 59, 100490.
doi: 10.1016/j.websem.2018.12.008
|
4 |
PALMONARI M , MINERVINI P . Knowledge graph embeddings and explainable AI. Knowledge Graphs for Explainable Artificial Intelligence: Foundations, Applications and Challenges, 2020, 47, 49.
|
5 |
TAN Z X, CHEN Z L, FENG S B, et al. KRACL: contrastive learning with graph context modeling for sparse knowledge graph completion[C]//Proceedings of the ACM Web Conference 2023. New York, USA: ACM Press, 2023: 2548-2559.
|
6 |
|
7 |
|
8 |
|
9 |
张正航, 钱育蓉, 行艳妮, 等. 基于TransE的表示学习方法研究综述. 计算机应用研究, 2021, 38 (3): 656- 663.
|
|
ZHANG Z H , QIAN Y R , XING Y N , et al. Survey of representation learning methods based on TransE. Application Research of Computers, 2021, 38 (3): 656- 663.
|
10 |
|
11 |
LI L F , WANG P , WANG Y , et al. A method to learn embedding of a probabilistic medical knowledge graph: algorithm development. JMIR Medical Informatics, 2020, 8 (5): e17645.
doi: 10.2196/17645
|
12 |
SADEGHIAN A, ARMANDPOUR M, COLAS A, et al. ChronoR: rotation based temporal knowledge graph embedding[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 6471-6479.
|
13 |
ZHANG W, WONG C M, YE G Q, et al. Billion-scale pre-trained e-commerce product knowledge graph model[C]//Proceedings of the IEEE 37th International Conference on Data Engineering (ICDE). Washington D.C., USA: IEEE Press, 2021: 2476-2487.
|
14 |
DAI Y F , WANG S P , XIONG N N , et al. A survey on knowledge graph embedding: approaches, applications and benchmarks. Electronics, 2020, 9 (5): 750.
doi: 10.3390/electronics9050750
|
15 |
JI S X , PAN S R , CAMBRIA E , et al. A survey on knowledge graphs: representation, acquisition, and applications. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (2): 494- 514.
doi: 10.1109/TNNLS.2021.3070843
|
16 |
HE B, ZHOU D, XIAO J H, et al. Integrating graph contextualized knowledge into pre-trained language models[EB/OL]. [2023-08-17]. http://arxiv.org/abs/1912.00147.
|
17 |
CHIAN V C, HILDEBRANDT M, RUNKLER T, et al. Learning through structure: towards deep neuromorphic knowledge graph embeddings[C]//Proceedings of the International Conference on Neuromorphic Computing (ICNC). Washington D.C., USA: IEEE Press, 2021: 61-70.
|
18 |
|
19 |
YU D H, ZHU C G, YANG Y M, et al. JAKET: joint pre-training of knowledge graph and language understanding[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2022: 11630-11638.
|
20 |
|
21 |
LIU W Q , CAI H Y , CHENG X , et al. Learning high-order structural and attribute information by knowledge graph attention networks for enhancing knowledge graph embedding. Knowledge-Based Systems, 2022, 250, 109002.
doi: 10.1016/j.knosys.2022.109002
|
22 |
PATEL R, FERRARO F. On the complementary nature of knowledge graph embedding, fine grain entity types, and language modeling[EB/OL]. [2023-08-17]. http://arxiv.org/abs/2010.05732.
|
23 |
LI X H, ZHANG Y, XING C X. Jointly learning knowledge embedding and neighborhood consensus with relational knowledge distillation for entity alignment[EB/OL]. [2023-08-17]. http://arxiv.org/abs/2201.11249.
|
24 |
NGUYEN D Q. A survey of embedding models of entities and relationships for knowledge graph completion[EB/OL]. [2023-08-17]. http://arxiv.org/abs/1703.08098.
|
25 |
GESESE G A , BISWAS R , ALAM M , et al. A survey on knowledge graph embeddings with literals: which model links better literally?. Semantic Web, 2021, 12 (4): 617- 647.
doi: 10.3233/SW-200404
|
26 |
YU D H, YANG Y M, ZHANG R H, et al. Knowledge embedding based graph convolutional network[C]//Proceedings of the Web Conference 2021. New York, USA: ACM Press, 2021: 1619-1628.
|
27 |
SHAO P P , ZHANG D W , YANG G H , et al. Tucker decomposition-based temporal knowledge graph completion. Knowledge-Based Systems, 2022, 238, 107841.
doi: 10.1016/j.knosys.2021.107841
|
28 |
MONKA S , HALILAJ L , RETTINGER A . A survey on visual transfer learning using knowledge graphs. Semantic Web, 2022, 13 (3): 477- 510.
doi: 10.3233/SW-212959
|
29 |
LU F Y , CONG P J , HUANG X L . Utilizing textual information in knowledge graph embedding: a survey of methods and applications. IEEE Access, 2020, 8, 92072- 92088.
|
30 |
靳州, 杨振舰. 基于关系时间嵌入的时间知识表示学习. 天津城建大学学报, 2022, 28 (4): 297- 301.
|
|
JIN Z , YANG Z J . Temporal knowledge representation learning based on relational time embedding. Journal of Tianjin Chengjian University, 2022, 28 (4): 297- 301.
|
31 |
WANG M H , QIU L L , WANG X L . A survey on knowledge graph embeddings for link prediction. Symmetry, 2021, 13 (3): 485.
doi: 10.3390/sym13030485
|
32 |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013: 2787-2795.
|
33 |
WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2014: 1112-1119.
|
34 |
LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2015: 2181-2187.
|
35 |
JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2015: 687-696.
|
36 |
陈晓军, 向阳. STransH: 一种改进的基于翻译模型的知识表示模型. 计算机科学, 2019, 46 (9): 184- 189.
|
|
CHEN X J , XIANG Y . STransH: a revised translation-based model for knowledge representation. Computer Science, 2019, 46 (9): 184- 189.
|
37 |
LIN Y K, LIU Z Y, LUAN H B, et al. Modeling relation paths for representation learning of knowledge bases[EB/OL]. [2023-08-17]. http://arxiv.org/abs/1506.00379.
|
38 |
FENG J, HUANG M, WANG M, et al. Knowledge graph embedding by flexible translation[C]//Proceedings of the 15th International Conference on the Principles of Knowledge Representation and Reasoning. New York, USA: ACM Press, 2016: 557-560.
|
39 |
BIN C Z , QIN S G , RAO G J , et al. Multiview translation learning for knowledge graph embedding. Scientific Programming, 2020, (1): 7084958.
|
40 |
NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning. New York, USA: ACM Press, 2011: 809-816.
|
41 |
YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. [2023-08-17]. http://arxiv.org/abs/1412.6575.
|
42 |
NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 1955-1961.
|
43 |
LIU Y, YAO Q M, LI Y. Generalizing tensor decomposition for N-ary relational knowledge bases[C]//Proceedings of the Web Conference 2020. New York, USA: ACM Press, 2020: 1104-1114.
|
44 |
BALAŽEVI AC'G I, ALLEN C, HOSPEDALES T M. TuckER: tensor factorization for knowledge graph completion[EB/OL]. [2023-08-17]. http://arxiv.org/abs/1901.09590.
|
45 |
DI S M, YAO Q M, CHEN L. Searching to sparsify tensor decomposition for N-ary relational data[C]//Proceedings of the Web Conference 2021. New York, USA: ACM Press, 2021: 4043-4054.
|
46 |
BORDES A , GLOROT X , WESTON J , et al. A semantic matching energy function for learning with multi-relational data. Machine Learning, 2014, 94 (2): 233- 259.
|
47 |
SOCHER R, CHEN D Q, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013: 926-934.
|
48 |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2018: 1811-1818.
|
49 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of ESWC'18. Berlin, Germany: Springer, 2018: 593-607.
|
50 |
ZHANG X , ZHANG C X , GUO J T , et al. Graph attention network with dynamic representation of relations for knowledge graph completion. Expert Systems with Applications, 2023, 219, 119616.
|
51 |
XU H C, BAO J P, LIU W B. Double-branch multi-attention based graph neural network for knowledge graph completion[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2023: 15257-15271.
|
52 |
XIE R B, LIU Z Y, JIA J, et al. Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 2659-2665.
|
53 |
|
54 |
XIE R, LIU Z, SUN M. Representation learning of knowledge graphs with hierarchical types[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2016: 2965-2971.
|
55 |
|
56 |
WANG M, WANG S, YANG H, et al. Is visual context really helpful for knowledge graph? A representation learning perspective[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 2735-2743.
|
57 |
SHANG C, TANG Y, HUANG J, et al. End-to-end structure-aware convolutional networks for knowledge base completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 3060-3067.
|
58 |
JIANG T S, LIU T Y, GE T, et al. Encoding temporal information for time-aware link prediction[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2016: 2350-2354.
|
59 |
DASGUPTA S S, RAY S N, TALUKDAR P. HyTE: hyperplane-based temporally aware knowledge graph embedding[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 2001-2011.
|
60 |
XU Y H , SUN S J , ZHANG H G , et al. Time-aware graph embedding: a temporal smoothness and task-oriented approach. ACM Transactions on Knowledge Discovery from Data, 2022, 16 (3): 1- 23.
|
61 |
LI F Y, CHEN M D, DONG R S. Multi-hop question answering with knowledge graph embedding in a similar semantic space[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington D.C., USA: IEEE Press, 2022: 1-8.
|
62 |
WANG J C, LI W M, GUO Y X, et al. Path-aware multi-hop question answering over knowledge graph embedding[C]//Proceedings of the 34th International Conference on Tools with Artificial Intelligence (ICTAI). Washington D.C., USA: IEEE Press, 2022: 459-466.
|
63 |
ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 353-362.
|
64 |
FU C B, ZHOU M M, XUAN Q, et al. Expert recommendation in OSS projects based on knowledge embedding[C]//Proceedings of the International Workshop on Complex Systems and Networks (IWCSN). Washington D.C., USA: IEEE Press, 2017: 149-155.
|