| 1 | DIAS R, FONSECA M J. Improving music recommendation in session-based collaborative filtering by using temporal context[C]//Proceedings of the 25th IEEE International Conference on Tools with Artificial Intelligence. Washington D. C., USA: IEEE Press, 2014: 783-788. | 
																													
																							| 2 | 张晓晖, 马慧芳, 王文涛, 等. 基于跨会话知识图谱的图注意力网络推荐方法. 计算机工程, 2023, 49 (2): 136-142, 149.  URL
 | 
																													
																							|  | ZHANG X H, MA H F, WANG W T, et al. Graph attention network recommendation method based on cross-session knowledge map. Computer Engineering, 2023, 49 (2): 136-142, 149.  URL
 | 
																													
																							| 3 | XIA X, YIN H Z, YU J L, et al. Self-supervised hypergraph convolutional networks for session-based recommendation[EB/OL]. [2022-10-10]. https://arxiv.org/abs/2012.06852 . | 
																													
																							| 4 | XIA X, YIN H Z, YU J L, et al. Self-supervised graph co-training for session-based recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2021: 2180-2190. | 
																													
																							| 5 | GUPTA P, GARG D, MALHOTRA P, et al. NISER: normalized item and session representations to handle popularity bias[EB/OL]. [2022-10-10]. https://arxiv.org/abs/1909.04276 . | 
																													
																							| 6 | GUO J, YANG Y, SONG X, et al. Learning multi-granularity consecutive user intent unit for session-based recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2022: 343-352. | 
																													
																							| 7 | CHEN T W, WONG R C W. Handling information loss of graph neural networks for session-based recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2020: 1172-1180. | 
																													
																							| 8 | WANG Z Y, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 169-178. | 
																													
																							| 9 | RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York, USA: ACM Press, 2010: 811-820. | 
																													
																							| 10 | CHEN S, MOORE J L, TURNBULL D, et al. Playlist prediction via metric embedding[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2012: 714-722. | 
																													
																							| 11 | LI J, REN P J, CHEN Z M, et al. Neural attentive session-based recommendation[C]//Proceedings of 2017 ACM Conference on Information and Knowledge Management. New York, USA: ACM Press, 2017: 1419-1428. | 
																													
																							| 12 | WANG M R, REN P J, MEI L, et al. A collaborative session-based recommendation approach with parallel memory modules[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2019: 345-354. | 
																													
																							| 13 | WU S, TANG Y Y, ZHU Y Q, et al. Session-based recommendation with graph neural networks. Artificial Intelligence, 2019, 33 (1): 346- 353. | 
																													
																							| 14 | 郑苏洋, 姜久雷, 王晓峰. 基于用户项目体验度的协同过滤推荐算法. 计算机工程, 2017, 43 (8): 215-218, 224.  URL
 | 
																													
																							|  | ZHENG S Y, JIANG J L, WANG X F. Collaborative filtering recommendation algorithm based on user project experience degree. Computer Engineering, 2017, 43 (8): 215-218, 224.  URL
 | 
																													
																							| 15 | PARK Y J, TUZHILIN A. The long tail of recommender systems and how to leverage it[C]//Proceedings of 2008 ACM Conference on Recommender Systems. New York, USA: ACM Press, 2008: 11-18. | 
																													
																							| 16 | ZHANG Y, CHENG D Z, YAO T S, et al. A model of two tales: dual transfer learning framework for improved long-tail item recommendation[C]//Proceedings of Web Conference. New York, USA: ACM Press, 2021: 2220-2231. | 
																													
																							| 17 | LIU S Y, ZHENG Y J. Long-tail session-based recommendation[C]//Proceedings of the 14th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2020: 509-514. | 
																													
																							| 18 | LARSSON G, MAIRE M, SHAKHNAROVICH G. Learning representations for automatic colorization[C]// Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 577-593. | 
																													
																							| 19 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2022-10-10]. https://arxiv.org/abs/1810.04805 . | 
																													
																							| 20 | VELICKOVI P, FEDUS W, HAMILYON W L, et al. Deep Graph Infomax(DGI)[C]//Proceedings of IEEE International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2019: 1258-1267. | 
																													
																							| 21 | SUN F Y, HOFFMAN J, VERMA V, et al. Infograph: unsupervised and semi-supervised graphlevel representation learning via mutual information maximization[C]//Proceedings of IEEE International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2019: 367-378. | 
																													
																							| 22 | REN P J, CHEN Z M, LI J, et al. Repeatnet: a repeat aware neural recommendation machine for session-based recommendation[C]//Proceedings of AAAI Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2019: 4806-4813. | 
																													
																							| 23 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2818-2826. | 
																													
																							| 24 | SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York, USA: ACM Press, 2001: 285-295. | 
																													
																							| 25 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988. | 
																													
																							| 26 | MENON A, JAYASUMANA S, RAWAT A, et al. Long-tail learning via logit adjustmen[C]//Proceedings of IEEE International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2020: 468-479. | 
																													
																							| 27 | BROWNLEE J. Imbalanced classification with PyThon: better metrics, balance skewed classes, cost-sensitive learning. Machine Learning, 2020, 52 (4): 269- 281. | 
																													
																							| 28 |  | 
																													
																							| 29 | WANG Y X, RAMANAN D, HEBERT M. Learning to model the tail[C]//Proceedings of NIPSʼ17. Cambridge, USA: MIT Press, 2017: 3687-3699. | 
																													
																							| 30 | BOX G E P, MEYER R D. An analysis for unreplicated fractional factorials. Technometrics, 1986, 28 (1): 11- 18.  doi: 10.1080/00401706.1986.10488093
 |