| 1 | KAPANIPATHI P, THOST V, SANKALP PATEL S, et al. Infusing knowledge into the textual entailment task using graph convolutional networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 8074- 8081.  doi: 10.1609/aaai.v34i05.6318
 | 
																													
																							| 2 | GALETZKA F, ROSE J, SCHLANGEN D, et al. Space efficient context encoding for non-task-oriented dialogue generation with graph attention transformer[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2021: 15-26. | 
																													
																							| 3 | MOHAMED A, QIAN K, ELHOSEINY M, et al. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction[EB/OL]. [2023-01-05]. https://arxiv.org/abs/2002.11927 . | 
																													
																							| 4 | ZHANG Z Q, SHI Y Y, YUAN C F, et al. Object relational graph with teacher-recommended learning for video captioning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 22-36. | 
																													
																							| 5 | 潘嘉诚, 董一鸿, 陈华辉. 基于图神经网络的自闭症辅助诊断研究综述. 计算机工程, 2022, 48(9): 1- 11.  URL
 | 
																													
																							|  | PAN J C, DONG Y H, CHEN H H. Review of research on auxiliary diagnosis of autism based on graph neural networks. Computer Engineering, 2022, 48(9): 1- 11.  URL
 | 
																													
																							| 6 |  | 
																													
																							| 7 |  | 
																													
																							| 8 | CHI P H, CHUNG P H, WU T H, et al. Audio ALBERT: a lite BERT for self-supervised learning of audio representation[C]//Proceedings of 2021 IEEE Spoken Language Technology Workshop. Washington D. C., USA: IEEE Press, 2021: 123-156. | 
																													
																							| 9 | WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2021: 726-735. | 
																													
																							| 10 | 王曙燕, 郭睿涵, 孙家泽. 基于图对比学习的MOOC推荐方法. 计算机工程, 2023, 49(1): 57-64, 72.  URL
 | 
																													
																							|  | WANG S Y, GUO R H, SUN J Z. Recommendation method for MOOC based on graph contrastive learning. Computer Engineering, 2023, 49(1): 57-64, 72.  URL
 | 
																													
																							| 11 | QIU J Z, CHEN Q B, DONG Y X, et al. GCC: graph contrastive coding for graph neural network pre-training[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2020: 1150-1160. | 
																													
																							| 12 | ZHU Y Q, XU Y C, YU F, et al. Graph contrastive learning with adaptive augmentation[C]//Proceedings of the 2021 Web Conference. New York, USA: ACM Press, 2021: 2069-2080. | 
																													
																							| 13 | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009, 20(1): 61- 80.  doi: 10.1109/TNN.2008.2005605
 | 
																													
																							| 14 |  | 
																													
																							| 15 |  | 
																													
																							| 16 |  | 
																													
																							| 17 | KRASANAKIS E, PAPADOPOULOS S, KOMPATSIARIS I. p2pGNN: a decentralized graph neural network for node classification in peer-to-peer networks. IEEE Access, 2022, 10, 34755- 34765.  doi: 10.1109/ACCESS.2022.3159688
 | 
																													
																							| 18 | LIBEN-NOWELL D, KLEINBERG J. The link prediction problem for social networks[C]//Proceedings of the 12th International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2003: 556-559. | 
																													
																							| 19 | YING R, YOU J X, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2018: 4805-4815. | 
																													
																							| 20 |  | 
																													
																							| 21 |  | 
																													
																							| 22 | 苗雨欣, 宋春花, 牛保宁, 等. 双通道图协同过滤推荐算法. 计算机工程, 2022, 48(8): 121- 128.  URL
 | 
																													
																							|  | MIAO Y X, SONG C H, NIU B N, et al. Dual-channel graph collaborative filtering recommendation algorithm. Computer Engineering, 2022, 48(8): 121- 128.  URL
 | 
																													
																							| 23 | XIA X, YIN H Z, YU J L, et al. Self-supervised hypergraph convolutional networks for session-based recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4503- 4511.  doi: 10.1609/aaai.v35i5.16578
 | 
																													
																							| 24 | YANG Y H, HUANG C, XIA L H, et al. Knowledge graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 1434-1443. | 
																													
																							| 25 |  | 
																													
																							| 26 | HALKO N, MARTINSSON P G, TROPP J A. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 2011, 53(2): 217- 288.  doi: 10.1137/090771806
 | 
																													
																							| 27 | CHEN L, WU L, HONG R, et al. Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach[EB/OL]. [2023-01-05]. https://arxiv.org/abs/2001.10167.pdf . | 
																													
																							| 28 | HE X H, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[EB/OL]. [2023-01-05]. https://arxiv.org/abs/2002.02126 . | 
																													
																							| 29 |  | 
																													
																							| 30 | WANG J L, DING K Z, HONG L J, et al. Next-item recommendation with sequential hypergraphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 1101-1110. | 
																													
																							| 31 | YU J L, YIN H Z, LI J D, et al. Self-supervised multi-channel hypergraph convolutional network for social recommendation[EB/OL]. [2023-01-05]. https://arxiv.org/abs/2101.06448 . | 
																													
																							| 32 | XIA L H, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 70-79. | 
																													
																							| 33 | XIA L H, HUANG C, ZHANG C X. Self-supervised hypergraph transformer for recommender systems[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 2100-2109. | 
																													
																							| 34 | YU J L, YIN H Z, XIA X, et al. Are graph augmentations necessary? simple graph contrastive learning for recom-mendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 1294-1303. |