| 1 | LIAO B, CHEN S, WANG X, et al. MapTR: structured modeling and learning for online vectorized HD map construction[EB/OL]. [2024-10-08]. https://arxiv.org/abs/2208.14437 . | 
																													
																							| 2 | 赵南南, 高翡晨.  基于改进YOLOv8的交通场景实例分割算法. 计算机工程, 2025, 51 (1): 198- 207.  doi: 10.19678/j.issn.1000-3428.0068677
 | 
																													
																							|  |  ZHAO N N ,  GAO F C .  Improved YOLOv8-based algorithm for instance segmentation in traffic scenes. Computer Engineering, 2025, 51 (1): 198- 207.  doi: 10.19678/j.issn.1000-3428.0068677
 | 
																													
																							| 3 | 秦严严.  交通流分析理论. 北京: 人民交通出版社, 2023. | 
																													
																							|  |  QIN Y Y .  Theory of traffic flow analysis. Beijing: China Communications Press, 2023. | 
																													
																							| 4 | LI Q, WANG Y, WANG Y L, et al. HDMapNet: an online HD map construction and evaluation framework[C]//Proceedings of the International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2022: 4628-4634. | 
																													
																							| 5 | 周海赟, 项学智, 王馨遥, 等.  多特征融合的端到端链式行人多目标跟踪网络. 计算机工程, 2022, 48 (9): 305- 313.  doi: 10.19678/j.issn.1000-3428.0062296
 | 
																													
																							|  |  ZHOU H Y ,  XIANG X Z ,  WANG X Y , et al.  Chained end-to-end pedestrian multi-object tracking network with multi-feature fusion. Computer Engineering, 2022, 48 (9): 305- 313.  doi: 10.19678/j.issn.1000-3428.0062296
 | 
																													
																							| 6 | 刘宏纬, 邵东恒, 杨剑, 等.  基于鸟瞰图融合的多级旋转等变目标检测网络. 计算机工程, 2024, 50 (11): 246- 257.  doi: 10.19678/j.issn.1000-3428.0068696
 | 
																													
																							|  |  LIU H W ,  SHAO D H ,  YANG J , et al.  Multi-level rotational equivariant object detection network based on BEV fusion. Computer Engineering, 2024, 50 (11): 246- 257.  doi: 10.19678/j.issn.1000-3428.0068696
 | 
																													
																							| 7 | LIU Z J, TANG H T, AMINI A, et al. BEVFusion: multi-task multi-sensor fusion with unified bird's-eye view representation[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2023: 2774-2781. | 
																													
																							| 8 |  | 
																													
																							| 9 | CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 11618-11628. | 
																													
																							| 10 | DONG H, GU W H, ZHANG X J, et al. SuperFusion: multilevel LiDAR-camera fusion for long-range HD map generation[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2024: 9056-9062. | 
																													
																							| 11 |  SUN L ,  YANG K L ,  HU X X , et al.  Real-time fusion network for RGB-D semantic segmentation incorporating unexpected obstacle detection for road-driving images. IEEE Robotics and Automation Letters, 2020, 5 (4): 5558- 5565.  doi: 10.1109/LRA.2020.3007457
 | 
																													
																							| 12 | HU S C, CHEN L, WU P H, et al. ST-P3: end-to-end vision-based autonomous driving via spatial-temporal feature learning[EB/OL]. [2024-10-08]. https://arxiv.org/abs/2207.07601 . | 
																													
																							| 13 | RHINEHART N, MCALLISTER R, KITANI K, et al. PRECOG: prediction conditioned on goals in visual multi-agent settings[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 2821-2830. | 
																													
																							| 14 | XU H, YANG C G, LI Z J. OD-SLAM: real-time localization and mapping in dynamic environment through multi-sensor fusion[C]//Proceedings of the 5th International Conference on Advanced Robotics and Mechatronics (ICARM). Washington D.C., USA: IEEE Press, 2020: 172-177. | 
																													
																							| 15 |  CHEN J X ,  LI X ,  XIE J , et al.  CBI-GNN: cross-scale bilateral graph neural network for 3D object detection. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (12): 23124- 23135.  doi: 10.1109/TITS.2022.3202943
 | 
																													
																							| 16 | PHILION J, FIDLER S. Lift, splat, shoot: encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer International Publishing, 2020: 194-210. | 
																													
																							| 17 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2009: 248-255. | 
																													
																							| 18 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778. | 
																													
																							| 19 | LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 12689-12697. | 
																													
																							| 20 | CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 77-85. | 
																													
																							| 21 | MAN Y Z, GUI L Y, WANG Y X. DualCross: cross-modality cross-domain adaptation for monocular BEV perception[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2023: 10910-10917. | 
																													
																							| 22 |  | 
																													
																							| 23 |  DENG L Y ,  YANG M ,  LI H , et al.  Restricted deformable convolution-based road scene semantic segmentation using surround view cameras. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (10): 4350- 4362. | 
																													
																							| 24 |  PAN B W ,  SUN J K ,  LEUNG H Y T , et al.  Cross-view semantic segmentation for sensing surroundings. IEEE Robotics and Automation Letters, 2020, 5 (3): 4867- 4873.  doi: 10.1109/LRA.2020.3004325
 | 
																													
																							| 25 |  | 
																													
																							|  |  | 
																													
																							| 26 |  | 
																													
																							| 27 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of ECCV'14. Berlin, Germany: Springer International Publishing, 2014: 740-755. |