| 1 |
LIAO B, CHEN S, WANG X, et al. MapTR: structured modeling and learning for online vectorized HD map construction[EB/OL]. [2024-10-08]. https://arxiv.org/abs/2208.14437.
|
| 2 |
赵南南, 高翡晨. 基于改进YOLOv8的交通场景实例分割算法. 计算机工程, 2025, 51 (1): 198- 207.
doi: 10.19678/j.issn.1000-3428.0068677
|
|
ZHAO N N , GAO F C . Improved YOLOv8-based algorithm for instance segmentation in traffic scenes. Computer Engineering, 2025, 51 (1): 198- 207.
doi: 10.19678/j.issn.1000-3428.0068677
|
| 3 |
秦严严. 交通流分析理论. 北京: 人民交通出版社, 2023.
|
|
QIN Y Y . Theory of traffic flow analysis. Beijing: China Communications Press, 2023.
|
| 4 |
LI Q, WANG Y, WANG Y L, et al. HDMapNet: an online HD map construction and evaluation framework[C]//Proceedings of the International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2022: 4628-4634.
|
| 5 |
周海赟, 项学智, 王馨遥, 等. 多特征融合的端到端链式行人多目标跟踪网络. 计算机工程, 2022, 48 (9): 305- 313.
doi: 10.19678/j.issn.1000-3428.0062296
|
|
ZHOU H Y , XIANG X Z , WANG X Y , et al. Chained end-to-end pedestrian multi-object tracking network with multi-feature fusion. Computer Engineering, 2022, 48 (9): 305- 313.
doi: 10.19678/j.issn.1000-3428.0062296
|
| 6 |
刘宏纬, 邵东恒, 杨剑, 等. 基于鸟瞰图融合的多级旋转等变目标检测网络. 计算机工程, 2024, 50 (11): 246- 257.
doi: 10.19678/j.issn.1000-3428.0068696
|
|
LIU H W , SHAO D H , YANG J , et al. Multi-level rotational equivariant object detection network based on BEV fusion. Computer Engineering, 2024, 50 (11): 246- 257.
doi: 10.19678/j.issn.1000-3428.0068696
|
| 7 |
LIU Z J, TANG H T, AMINI A, et al. BEVFusion: multi-task multi-sensor fusion with unified bird's-eye view representation[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2023: 2774-2781.
|
| 8 |
|
| 9 |
CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 11618-11628.
|
| 10 |
DONG H, GU W H, ZHANG X J, et al. SuperFusion: multilevel LiDAR-camera fusion for long-range HD map generation[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2024: 9056-9062.
|
| 11 |
SUN L , YANG K L , HU X X , et al. Real-time fusion network for RGB-D semantic segmentation incorporating unexpected obstacle detection for road-driving images. IEEE Robotics and Automation Letters, 2020, 5 (4): 5558- 5565.
doi: 10.1109/LRA.2020.3007457
|
| 12 |
HU S C, CHEN L, WU P H, et al. ST-P3: end-to-end vision-based autonomous driving via spatial-temporal feature learning[EB/OL]. [2024-10-08]. https://arxiv.org/abs/2207.07601.
|
| 13 |
RHINEHART N, MCALLISTER R, KITANI K, et al. PRECOG: prediction conditioned on goals in visual multi-agent settings[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 2821-2830.
|
| 14 |
XU H, YANG C G, LI Z J. OD-SLAM: real-time localization and mapping in dynamic environment through multi-sensor fusion[C]//Proceedings of the 5th International Conference on Advanced Robotics and Mechatronics (ICARM). Washington D.C., USA: IEEE Press, 2020: 172-177.
|
| 15 |
CHEN J X , LI X , XIE J , et al. CBI-GNN: cross-scale bilateral graph neural network for 3D object detection. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (12): 23124- 23135.
doi: 10.1109/TITS.2022.3202943
|
| 16 |
PHILION J, FIDLER S. Lift, splat, shoot: encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer International Publishing, 2020: 194-210.
|
| 17 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2009: 248-255.
|
| 18 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
|
| 19 |
LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 12689-12697.
|
| 20 |
CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 77-85.
|
| 21 |
MAN Y Z, GUI L Y, WANG Y X. DualCross: cross-modality cross-domain adaptation for monocular BEV perception[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2023: 10910-10917.
|
| 22 |
|
| 23 |
DENG L Y , YANG M , LI H , et al. Restricted deformable convolution-based road scene semantic segmentation using surround view cameras. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (10): 4350- 4362.
|
| 24 |
PAN B W , SUN J K , LEUNG H Y T , et al. Cross-view semantic segmentation for sensing surroundings. IEEE Robotics and Automation Letters, 2020, 5 (3): 4867- 4873.
doi: 10.1109/LRA.2020.3004325
|
| 25 |
|
|
|
| 26 |
|
| 27 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of ECCV'14. Berlin, Germany: Springer International Publishing, 2014: 740-755.
|