[1] 韩伟力, 张俊杰, 徐铭, 等. 参数化混合口令猜测方法[J]. 计算机研究与发展, 2022, 59(12): 2708-2722. HAN W L, ZHANG J J, XU M, et al. Parameterized hybrid password guessing method[J]. Journal of Computer Research and Development, 2022, 59(12): 2708-2722. (in Chinese) [2] 韩伟力, 袁琅, 李思斯, 等. 一种基于样本的模拟口令集生成算法[J]. 计算机学报, 2017, 40(5): 1151-1167. HAN W L, YUAN L, LI S S, et al. An efficient algorithm to generate password sets based on samples[J]. Chinese Journal of Computers, 2017, 40(5): 1151-1167. (in Chinese) [3] ZHANG H D, WANG C W, RUAN W Q, et al. Digit semantics based optimization for practical password cracking tools[C]//Proceedings of the Annual Computer Security Applications Conference. New York, USA: ACM Press, 2021: 513-527. [4] XU M, WANG C W, YU J T, et al. Chunk-level password guessing: towards modeling refined password composition representations[C]//Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2021: 5-20. [5] WANG D, HE D B, CHENG H B, et al. fuzzyPSM: a new password strength meter using fuzzy probabilistic context-free grammars[C]//Proceedings of the 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). Toulouse, France: IEEE Press, 2016: 595-606. [6] HAN W L, LI Z G, NI M Y, et al. Shadow attacks based on password reuses: a quantitative empirical analysis[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 15(2): 309-320. [7] PEARMAN S, THOMAS J, NAEINI P E, et al. Let’s go in for a closer look: observing passwords in their natural habitat[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2017: 295-310. [8] DAS A, BONNEAU J, CAESAR M, et al. The tangled web of password reuse[C]//Proceedings of the 21st Annual Network and Distributed System Security Symposium. San Diego, USA: The Internet Society, 2014: 1-15. [9] HUNT T. Have I been pwned?[EB/OL].[2024-04-23]. https://haveibeenpwned.com/Passwords/. [10] PAL B, ISLAM M, SANUSI M, et al. Might I get pwned: a second generation compromised credential checking service[C]//Proceedings of the 31st USENIX Security Symposium. Boston, USA: USENIX Association, 2022: 1831-1848. [11] THOMAS K, PULLMAN J, YEO K, et al. Protecting accounts from credential stuffing with password breach alerting[C]//Proceedings of the 28th USENIX Security Symposium. Santa Clara, USA: USENIX Association, 2019: 1556-1571. [12] XU M, YU J, ZHANG X, et al. Improving real-world password guessing attacks via bi-directional transformers[C]//Proceedings of the 32nd USENIX Security Symposium. Anaheim, USA: USENIX Association, 2023: 1001-1018. [13] PAL B, DANIEL T, CHATTERJEE R, et al. Beyond credential stuffing: password similarity models using neural networks[C]//Proceedings of the IEEE Symposium on Security and Privacy (SP). San Francisco, USA: IEEE Press, 2019: 417-434. [14] WANG D, ZOU Y, XIAO Y, et al. Pass2Edit: a multi-step generative model for guessing edited passwords[C]//Proceedings of the 32nd USENIX Security Symposium. Anaheim, USA: USENIX Association, 2023: 983-1000. [15] WANG D, ZHANG Z J, WANG P, et al. Targeted online password guessing: an underestimated threat[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2016: 1242-1254. [16] WEIR M, AGGARWAL S, MEDEIROS B, et al. Password cracking using probabilistic context-free grammars[C]//Proceedings of the 30th IEEE Symposium on Security and Privacy. Oakland, USA: IEEE Press, 2009: 391-405. [17] MELICHER W, UR B, KOMANDURI S, et al. Fast, lean, and accurate: modeling password guessability using neural networks[C]//Proceedings of the 2017 USENIX Annual Technical Conference. Santa Clara, USA: USENIX Association, 2016: 175-191. [18] 周环, 刘奇旭, 崔翔, 等. 基于神经网络的定向口令猜测研究[J]. 信息安全学报, 2018, 3(5): 25-37. ZHOU H, LIU Q X, CUI X, et al. Research on targeted password guessing using neural networks[J]. Journal of Cyber Security, 2018, 3(5): 25-37. (in Chinese) [19] LI Y, WANG H N, SUN K. Personal information in passwords and its security implications[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(10): 2320-2333. [20] PASQUINI D, ATENIESE G, TRONCOSO C. Universal neural-cracking-machines: self-configurable password models from auxiliary data[C]//Proceedings of the IEEE Symposium on Security and Privacy (SP). San Francisco, USA: IEEE Press, 2024: 32-32. [21] 汪定, 邹云开, 陶义, 等. 基于循环神经网络和生成式对抗网络的口令猜测模型研究[J]. 计算机学报, 2021, 44(8): 1519-1534. WANG D, ZOU Y K, TAO Y, et al. Password guessing based on recurrent neural networks and generative adversarial networks[J]. Chinese Journal of Computers, 2021, 44(8): 1519-1534. (in Chinese) [22] PASQUINI D, GANGWAL A, ATENIESE G, et al. Improving password guessing via representation learning[C]//Proceedings of IEEE Symposium on Security and Privacy. Washington D.C., USA: IEEE Press, 2021:1382-1399. [23] HAN W L, XU M, ZHANG J J, et al. TransPCFG: transferring the grammars from short passwords to guess long passwords effectively[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 451-465. [24] 章梦礼, 张启慧, 刘文芬, 等. 一种基于结构划分及字符串重组的口令攻击方法[J]. 计算机学报, 2019, 42(4): 913-928. ZHANG M L, ZHANG Q H, LIU W F, et al. A method of password attack based on structure partition and string reorganization[J]. Chinese Journal of Computers, 2019, 42(4): 913-928. (in Chinese) [25] LEVENSHTEIN V I. Binary codes capable of correcting deletions, insertions, and reversals[J]. Soviet Physics Doklady, 1965, 10: 707-710. |